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Abstract

We study the problem of identifying the cause and the ef-
fect between two univariate continuous variables X and Y.
The examined data is purely observational, hence it is re-
quired to make assumptions about the underlying model. Of-
ten, the independence of the noise from the cause is assumed,
which is not always the case for real world data. In view of
this, we present a new method, which explicitly models het-
eroscedastic noise. With our HEC algorithm, we can find the
optimal model regularized, by an information theoretic score.
In thorough experiments we show, that our ability to model
heteroscedastic noise translates into a superior performance
on a wide range of synthetic and real-world datasets.

Introduction

Causal discovery algorithms based on conditional inde-
pendence test are unable to discover fully oriented causal
graphs. To disambiguate between Markov equivalent graphs,
the causal direction between two variables must be inferred,
a problem known as bivariate causal inference. Pearl (2000)
showed that it is impossible to tell cause from effect from
observational data without additionally making assumptions
about the data generating process. Causal methods must
therefore put lots of care into their modelling assumptions,
such that it is both possible to guarantee that cause and effect
can be identified under these assumptions, as well as that
those assumptions are as likely to hold in practice as pos-
sible. Many methods build upon the assumption that noise
is completely independent from the cause (Biihlmann et al.
2014; Peters et al. 2014; Shimizu et al. 2006; Hoyer et al.
2009). Tagasovska, Chavez-Demoulin, and Vatter (2020)
show that methods, that do so, fail when the data generat-
ing process includes, for example, location-scaled noise.

In this work, we propose a method that sets itself
apart from the state of the art by explicitly modelling
heteroscedastic noise. Heteroscedacity describes the phe-
nomenon of a different noise variance within the domain
of the regressor. Rather than wishing it away, we propose a
causal model that builds upon the additive noise model, but
explitictly permits heteroscedacity. The cornerstone of our
approach is a fitting process that automatically divides up
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the domain into segments of noise with different variances.
We show under which assumptions we can idenfity the true
causal direction using the Bayesian information criterion.
We propose an efficient dynamic-programming based algo-
rithm, HEC, that can determine the optimal scoring model
in quadratic time despite an exponential search space. To-
gether, the addition to the additive noise model and the op-
timal algorithm allow us to demonstrate that HEC outper-
forms a wide range of state of the art methods on syn-
thetic and real world benchmarks that exhibit non-stationary
noise.

Theory

We consider the problem of inferring cause and effect be-
tween two dependent, continuous random variables X and
Y, under causal sufficiency assumption. That is, we assume
that there exists no unobserved confounding variable Z,
which causes both X and Y. Consequently, our task reduces
to deciding between the two Markov equivalent DAGs X —
Y and X < Y. To tackle this problem, we need to impose
assumptions on the underlying causal model (Pearl 2000;
Peters, Janzing, and Scholkopf 2017), which we define be-
low. Before that, we introduce the notation used throughout
this paper.

Notation

We refer to a sample of size n drawn from the distribution
P of a random variable X as {z;}?_,. Lowercase letters =
denote values from the domain X of X. Further, we follow
the convention of denoting the parameters of a function f as
B, where ||B¢||o is the Lo norm of the parameter vector.

Causal Model

Unlike most state-of-the-art approaches, we do not assume
an independence between cause and noise, but instead allow
for heteroscadastic noise, which may depend on the cause.

Assumption 1 (Causal Model). The effect Y is generated
from the cause X and noise variable N as

Y =f(X)+s(X)-N,

where [ is a non-linear function and s is a scaling function,
which we specify further in Assumption 2.



Assumption 2 (Heteroscedastic Noise). The scaled noise
(which may depend on X) is constructed from a standard
Gaussian variable N and a strictly positive scaling function
s : X — Rt—i.e. the variance of the scaled noise variable
s(X) - N is equal to s*(X).

Assumption 3 (Compact Supports). The distribution of X
and the distribution of Y has compact support, so that X and
Y attain values within 0 and 1 (similar to the assumption
made by Blobaum et al. (2018)).

One of the main advantages of the above causal model
is that it can express various noise settings. In particular, if
s(x) = cis just a mapping to a constant ¢, the above model
reduces to an additive noise model. More interesting to us,
however, is noise that may fan out scaled by location, which
can be expressed with s(z) = az + b. We provide an ex-
ample for such a generative mechanism in Fig. 1. As shown,
we approximate the mechanism by modeling the variance
s2(x) as a piecewise constant function. That is, we assume
that we can construct a partitioning P of the domain of X
s.t. s2(z) is constant within a bin of the partition, but may
vary between bins.

Assuming the model above, we will now explain how to
infer the causal direction between X and Y.

Inference

To infer the causal direction between X and Y, we fol-
low a recent line of research suggesting that it suffices to
compare the expected error (i.e. the residuals) when fitting
a non-linear function for the causal and anti-causal direc-
tion (Blobaum et al. 2018; Marx and Vreeken 2019).

In particular, for the low-noise setting Blobaum et al.
(2018) prove that

E[(Y - f(X))’] <E[(X - g(Y))"],

where f is the function minimizing the expected error when
fitting a regression function from X to Y and g is the corre-
sponding function minimizing the expected error in the anti-
causal direction. Although the assumptions of the original
approach—i.e. asserting low-noise, compact supports (As-
sumption 3) and additive noise are quite restrictive, our em-
pirical evaluation suggests that it is applicable to a much
more general setting.

To approximate the above inference criterium, we do
not directly compare the residual errors, but instead com-
pare the negative log-likelihoods w.r.t. the residuals under.
That is, we refer to the negative log-likelihood of residu-
als when fitting a model from X to Y as —logLx_,y =~
nlog 62, which is an increasing function of the empirical
error. Similarly, we denote the negative log-likelihood of
the inverse model by —log Ly _, x. Thus, we say that X
causes YV if —logLx_y < —logLy_x, that Y causes
X if —logLx_y > —logLy_x and do not decide if
both quantities are equal. For our assumed causal model, i.e.
under Assumptions 1-3, we can express the negative log-
likelihood as follows.

Given a sample {x;.y;}?; drawn iid from the joint dis-
tribution of X and Y, the empirical negative log-likelihood'

'In practice, we use the logarithm with base 2 to refer to bits.

for the X — Y direction with residuals r; = y; — f (z;) can
be expressed as

~log Ly (3%, f)] = ~log [ﬁpmm; >]
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Notice that last term depends only on n and can thus be
dropped, as it is the same for the inverse direction. Fur-
ther, if the variance is estimated homogeneously over the en-
tire domain, the maximum likelihood estimator is &ilobal =
L5~ 2. In our causal model, this corresponds to the em-
pirical variance function 5*(z) = 62,,,,;- Hence, we can
reformulate the second term as

n n A9
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which only depends on n and may be dropped. Thus,
for constant additive noise, the empirical negative log-
likelihood can be expressed as 5 - 108(57;,p01)-

For heteroscedastic noise, the negative log-likelihood can
be derived in a similar fashion. If the domain of X can
be partitioned in m non-overlapping bins s.t. within each
bin; the variance &? is constant, the empirical negative log-

likelihood w.r.t. a partitioning P with m non-overlapping
bins can be expressed as

m
_log [Lxﬁy(&z’, 7, 75)} = % log(62)
j=1
where n; relates to the number of data points falling within
bin;. For the inverse direction, we can derive the correspond-
ing negative log-likelihood similarly.
In the next section, we will explain how we compute P
and f to minimize the corresponding negative log-likelihood
via dynamic programming.

Algorithm

In the previous section, we established the heteroscedastic
noise model and a log-likelihood based approach to identify
the causal direction. It uses the residuals of the fitted func-
tion f under a partition P. However, ordinary least squares

regression and other methods estimate f (x) under the as-
sumption of homoscedastic noise.

In view of this, we present the HEC algorithm for
heteroscadastic noise causal models. The regressor domain
is divided up into segments, where least squares based re-
gression models are fitted. This way we implicitely esti-
mate s2(x) as locally constant, but globally different, het-
eroscedastic. To find the optimal partition and function, three
components are required: the binning scheme, that defines
the feasible partitions, the regularizing scoring function and
the optimization algorithm itself.



Figure 1: Fitted causal model with heteroscedastic noise.
The blue, orange and green segments show the partioned do-
main with locally constant variance. The dashed blue lines
show the initial bins for the partition.

Binning

We initiate the binning algorithm with b equal-width bins
that partition the domain of X. A local function is fitted in-
side a single bin or over multiple, neighboring bins. Each
bin is defined as the interval bin; : [min;, max;). In Fig. 1,
these are marked by the blue dashed lines. The bins are ad-
jacent with max; = min;q for j € [1,b — 1] and have
compact supports min; = 0 and maz;, = 1. In practice, this
is achieved through normalization of X.

The initial equal-width bins are defined such that max; =
min; + A. The initial bin width A must be chosen carefully,
especially in cases with limited data. We therefore require a
min support of 10 unique data points per bin. In our exper-
iments, we set A = 0.05, with which the best performance
was achieved. From the set of initial bins {bin; }?_,, the task
is to find a partition P of neighboring bins with the underly-
ing function f , which minimizes the negative log likelihood,
as described below.

In theory, we could approximate any noise variance s ()
under the assumption that n — oo, where at the same time
the maximal bin width goes to zero. Further, it must be en-
sured that the number of bins grows sub-linearly w.r.t. n,
such that enough data is available for each bin.

Scoring Models

The combined model of partition P and function f is
scored based on the empirical log likelihood and a param-
eter penalty. The cardinality of the partition is denoted as
|75\ The Akaike and Bayesian Information Criterion trade
off the complexity of the fitted function with the predictive
error. They offer a practical way to guide the model search.
AlC.

~2-log [L(5% £, P)] +2-118;llo +2- 1P|
BIC.
~2-log [L(5%, f,P)| + log(n) - (118;llo + 1)
For the scoring criterion, we opt for the stronger regu-

larization of the BIC score. Intuitively, the stronger regular-
ization helps us to avoid overfitting in cases where the true

model is outside of our causal model and for large datasets,
where gains of 2 bits are achieved easily.

With BIC, the task is to find the combination of local func-
tions, which minimize it. As we saw in the previous section,
the data likelihood is decomposable into independent, ad-
ditive components. In particular, BIC of a model, which is
partitioned at bin,_; is additive, i.e.

b a—1 b
BIC(f, |_J bin;)=BIC(f1, | bin;)+BIC(f2, | biny) .
j=1 j=1 k=a

We make use of this fact for our proposed algorithm to find
the optimal model within our binned search space.

HEC: Dynamic Programming Optimization

The binning provides b possible points, where the domain
may be partitioned, and thus 2° possible partitions in total.
The problem is structured however, and allows to find the
optimal model in b? fits. A similar algorithm for subgroup
discovery is described in full detail by Nguyen and Vreeken
(2016), or for histogram density estimation by Kontkanen
and Myllymaki (2007).

For a single binj, the best model f; ; is determined by
the best scored polynomial f; ; (linear to cubic). For groups
of multiple, neighboring bins, which we will call segments
from now on, there exist two possibilities for the optimal
model f 4:

* Alocal function f), 4 for the segment from bin,, to bin,

« A combination of two optimal functions f, , and f, 11,
for smaller segments, where p < a < q.

Note, that the optimal functions f,, and f,11,4 for the
smaller segments may in turn be a combination as well. The
algorithm to compute the optimal model f;; over the en-
tire domain is as follows. First, for all segments from bin,,
to bing (p,q € [1,b],p < q), the local polynomial functions
fp,q are fitted. To choose the polynomial degree, we use BIC
and minimize

q
fp.q =arg mfin BIC(f, Q bin;) .
J=p
The optimal model for the entire domain is attained in
a bottom-up approach. The single bin optimal models f; ;
are initialized with the local functions f; ;. To compute

the optimal models f, , for segments consisting of m =
q — p + 1 bins, all combinations of functions with splitpoint
a € [p,q — 1] are checked. This requires to have the optimal
models for all segments of size m — 1 and smaller available.
The best of the combined functions or the local function is
chosen based on the BIC and saved.

I if BIC(fp,q, U}, bin;) is min
Jo.a = fpaU fagq ifBIC(Jip,av U?:p bin;)
+BIC(fat1,9: Up—q 1 bing) is min

Once all optimal models of size m have been determined,
the segment size is incremented by one and the process is



repeated, until m = b. At this point, we have attained the
optimal model for the entire domain according to the BIC

score. The model defines a partition P, defined through the

selected split-points a; and the function f defined by the the
locally fitted polynomials in the partition.

One such fitted model can be seen in Fig. 1. From the
initial b bins, HEC uses the described bottom-up approach
to find the optimal partition and local functions, which are
marked as blue, orange and green. Like our causal model,
the variance is modelled as locally constant, but different
between each segment.

The complexity of our algorithm is as follows. There are
# permutations of p,q € [1,b],p < ¢. A local polyno-
mial function f, 4 is fitted with ordinary least squares in lin-

ear time O(n). The process to find an optimal model f,,
needs to compare at most b scores and is in O(b). Since the
number of bins b is smaller than the number of samples n,
the overall computational complexity of HEC is O(b? - n).
It means, that HEC finds the BIC-optimal partitioning and
function in only a quadratic amount fits for the given bins.

Inference with HEC

With all described components we now predict the causal
direction. First, X and Y are normalized to attain values be-
tween 0 and 1. In both directions, we fit the causal models
with the described HEC algorithm. For the X — Y as well
as the Y — X directions, we attain the empirical negative
log-likelihood and predict the causal direction as the one
corresponding to the lower negative log-likelihood as de-
scribed in the theory section. Additionally, to take the com-
plexity of the fitted function and partitioning into account,
we use the regularized BIC scores to conduct the compari-
son and infer the causal direction.

Related Work

Causal inference from observational data is an important
problem in science, and in recent years has received a lot of
attention (Mian, Marx, and Vreeken 2021; Glymour, Zhang,
and Spirtes 2019; Tagasovska, Chavez-Demoulin, and Vat-
ter 2020; Wang and Zhou 2021). Constraint-based ap-
proaches that use conditional independence tests (Colombo
and Maathuis 2014; Spirtes, Meek, and Richardson 1999)
can identify causal models up to Markov equivalance, i.e.
they cannot distinguish between the two Markov equivalent
DAGs X — Y and X < Y (Verma, Pearl et al. 1991;
Pearl 2000). To identify the causal direction between a pair
of variates it is hence necessary to make additional assump-
tions about the generating mechanism.

The most common such assumption is the additive noise
model (Peters, Janzing, and Scholkopf 2017), which has
been exploited in various settings. In essence, additive noise
models assume that the effect is generated as a deterministic
function of the cause X and an additive noise term Ny . For
a broad range of function classes and distributions (Shimizu
et al. 2006; Hoyer et al. 2009; Peters et al. 2011; Hu et al.
2018; Zhang and Hyvirinen 2009), it has been shown that
such an additive noise model cannot (or, is extremely un-
likely to) hold in the inverse direction—i.e. the noise Nx

will not be independent of Y. One of the most prominent
examples is the linear non-Gaussian additive noise model,
LiNGAM (Shimizu et al. 2006). A recent extension of the
additive noise model is NNCL (Wang and Zhou 2021), which
similar to our approach partitions the domain of the cause
into two, fits linear models for each bin, and then checks
whether the additive noise assumption holds for the parti-
tioned model. Different to NNCL, we consider a more gen-
eral class of partitions, non-linear functions and follow the
line of research based on comparing regression errors.

Another large class of approaches is based on the prin-
ciple of independent mechanisms (Janzing et al. 2012;
Sgouritsa et al. 2015), or its information-theoretic vari-
ant: the algorithmic independence of conditionals (Bud-
hathoki and Vreeken 2016; Marx and Vreeken 2017; Stegle
et al. 2010; Tagasovska, Chavez-Demoulin, and Vatter 2020;
Mian, Marx, and Vreeken 2021). Both postulates base their
inference on the assumption that P(X) is (algorithmically)
independent of P(Y | X'), while the same does not hold for
the factorization of the anti-causal direction, i.e. P(Y") is not
(algorithmically) independent of P(X | Y') (Peters, Janzing,
and Scholkopf 2017; Janzing and Schoélkopf 2010). Janzing
et al. (2012) define the approach IGCI which relies on the
principle of independent mechanisms and considers the set-
ting where the effect is a deterministic function of the cause.
In practice, they derive a score based on differential entropy.
SLOPE (Marx and Vreeken 2017) and QccCD (Tagasovska,
Chavez-Demoulin, and Vatter 2020) are two recent propos-
als that aim to approximate the algorithmic Markov condi-
tion. Although they empirically perform well, both do not
have identifiability guarantees.

Closely related methods to our work are the ones that
base their inference rules on regression error. Two such
approaches are RECI (Blobaum et al. 2018), which com-
pares the expected regression error, and SLOPPY (Marx and
Vreeken 2019), which considers Lg-penalized regression er-
rors. CAM (Biihlmann et al. 2014) is designed to find a gen-
eral causal graph, but can decide causal direction for the
bivariate case using regularized log-likelihood by building
upon identifiability results for additive noise models. In con-
trast to our approach, none of these approaches are tailored
towards heterogenous noise.

Experiments

In this section we empirically evaluate HEC on both syn-
thetic data and the real-world Tiibingen cause and effect
pairs (Mooij et al. 2016) dataset. We will compare it to
a wide range of state-of-the-art bivariate causal inference
methods. As representative approaches that assume an ad-
ditive noise model, we compare to CAM (Biihlmann et al.
2014) and RESIT (Peters et al. 2014). Further, we com-
pare to SLOPPY (Marx and Vreeken 2019), SLOPE (Marx
and Vreeken 2017), IGcr (Janzing et al. 2012) and
QccD (Tagasovska, Chavez-Demoulin, and Vatter 2020) as
the state-of-the-art information theoretic approaches, and fi-
nally also to NNCL (Wang and Zhou 2021) as the bivariate
causal inference approach for piecewise/non-invertible func-
tions.
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Figure 2: [Higher is better] Accuracy in determining cause
from effect for increasing heteroscedasticity.

HEC is implemented in Python and we provide the source
code as well as the synthetic data for research purposes? All
experiments are executed on a 4-core Intel i7 machine with
16 GB RAM, running Windows 10. For each instance, HEC
was able to decide the causal direction in less than 5 seconds.

Synthetic Data

We test HEC on two different settings. First, we generate
synthetic data according to our assumed causal model (see
Assumptions 1-3). Next, we use the synthetic data provided
by Tagasovska, Chavez-Demoulin, and Vatter (2020) over
different noise settings.

Heteroscedastic Noise We start by generating datasets
with known ground truth. We do so by relating cause to ef-
fect via a non-linear cubic spline function. For each causal
pair, we first randomly choose the noise to be either Gaus-
sian or uniform. We then introduce heteroscedasticity by di-
viding the domain of the causal variable into three contin-
uous, but disjoint sections of 25 samples each, with each
section having a different noise variance. The level of het-
eroscedasticity is controlled in each experiment through a
step parameter which determines how much the noise vari-
ance changes between the segments. We sample the step pa-
rameter for each pair uniformly from five different settings
which we show in Fig 2. Setting the step parameter to 0 im-
plies constant noise variance i.e. homoscedasticity. We gen-
erate a total of 100 pairs for each setting.

We run all methods, and plot their average accuracies in
Fig. 2. We see that HEC achieves a near-perfect accuracy in
all of the settings, whilst also having the smallest variance
between results. Other approaches either work well for ho-
moscedastic noise, but degrade rapidly as the noise variance
increases across the dataset (RESIT), have a high variance in
accuracy (QCCD, SLOPE and SLOPPY) or are stable but have
a lower accuracy than HEC throughout all settings (IGCI).

Location Scaled and Multiplicative Noise After con-
firming that HEC is able to identify the correct causal direc-
tions inside our causal model, we next evaluate HEC on three
synthetic benchmark datasets proposed by Tagasovska,
Chavez-Demoulin, and Vatter (2020), where our assump-
tions are unlikely to hold exactly. These datasets consist of
three different variants of noise, namely additive (AN), lo-
cation scaled (LS) and multiplicative (MN-U). We report the

*https://eda.mmci.uni-saarland.de/prj/hec/
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Figure 3: [Higher is better] Accuracy over benchmark syn-
thetic data with Additive Noise (AN), Location scaling (LS)
and Multiplicative noise (MN-U).

@
]
£ 0.8
3
< 0.6
g
2 04
S —— HEC —— SLOPPY — QCCD
S 0.2 CAM — Il — NNCL
R — SLOPE
0 T T T T T 1
0 0.2 0.4 0.6 0.8 1

Decision Rate

Figure 4: [Higher is better] Accuracy (weighted) over the
Tiibingen cause-effect pairs, ordered by decreasing het-
eroscedasticity.

accuracy over each of these data sets in Fig 3. We see that
HEC is robust to each of the three different noise settings
alongside SLOPPY and QcCcCD, with the latter outperform-
ing HEC by a slightest of margins. For other approaches we
see that they can only handle additive noise (RESIT) or de-
teriorate notably for multiplicative noise settings (IGCI and
NNCL).

Tiibingen Cause-Effect pairs

Finally, as the real-world benchmark datasets we compare to
the Tiibingen Cause-Effect pairs. Overall, HEC achieves an
accuracy of 0.71, significantly beaten only by SLOPE and on
par with the next closest competitors QCCD and SLOPPY.

Since the main objective of this paper is the inclusion
of heteroscedasticity into the causal model, we examine
this aspect further. That is, we sort the cause effect pairs
by heteroscedasticity, which is measured by the proportion
020w/ 02 (Maximum/minimum variance fitted by HEC in
the causal direction).

Fig. 4 shows the accuracy in relation to the decided pro-
portion of the pairs ordered by heteroscedasticity. Apart
from SLOPE, HEC is superior to all other approaches if
we decide the most heteroscedastic half of the dataset.
Even QccD, which does quantile regression with non-
constant noise assumptions, is outperformed in this segment.
It shows, that the causal model and the HEC algorithm are ef-
fective in dealing with highly variable noise. In addition, we
achieve a generally strong performance on synthetic bench-
marks, where methods like SLOPE fail. Overall, the results
show the potential of causal inference in the presence of het-



eroscedastic noise.

Conclusion

In this paper we presented work in progress. We propose
a causal model that sets itself apart from existing work by
explicitely modelling heteroscedastic noise; by which it is
particularly well-suited for a wide range of real-world appli-
cations. We show that we can identify the true causal model
using a broad range of information theoretic criteria, includ-
ing AIC and BIC, as well as how to efficiently do so from
observational data via dynamic programming. Through the
experiments, we show that our method, HEC, indeed per-
forms well on a wide range of benchmarks — especially in
the target scenarios with high heteroscedacity. This advan-
tage also shows on the real world Tiibingen Cause-Effect
pairs, in particular for those with a wide difference in vari-
ance of noise, and points towards the regularity and impor-
tance of heteroscedastic noise conditions.

As a continuation of this work, we aim to adapt the causal
model and algorithm to introduce smoothness and outlier re-
sistance to the fitted functions. Furthermore, we would like
to expand local functions from polynomials to include more
powerful models such as splines. Finally, an investigation
into identifiability of our causal model is to be conducted,
with the goal of providing guarantees under certain condi-
tions.
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