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Abstract

The algorithmic independence of conditionals, which postu-
lates that the causal mechanism is algorithmically indepen-
dent of the cause, has recently inspired many highly success-
ful approaches to distinguish cause from effect given only
observational data. Most popular among these is the idea
to approximate algorithmic independence via two-part Mini-
mum Description Length (MDL). Although intuitively sen-
sible, the link between the original postulate and practical
two-part MDL encodings has so far been left vague. In this
work, we close this gap by deriving a two-part formulation
of this postulate, in terms of Kolmogorov complexity, which
directly links to practical MDL encodings. To close the cy-
cle, we prove that this formulation leads on expectation to the
same inference result as the original postulate.

1 Introduction

Recovering causal networks from observational data is a
challenging, yet important problem in science. Traditional
methods are only able to infer the true causal graph up to
its Markov equivalence class, i.e., recover the correct undi-
rected network and some of the edge directions (Spirtes
et al. 2000). Inferring the network structure beyond such
a Markov equivalence class boils down to identifying the
causal direction in a bi-variate setting (Peters, Janzing, and
Scholkopf 2017). That is, given two dependent random vari-
ables X and Y, we need to distinguish between the two
Markov equivalent graphs X — Y an X < Y. Recent re-
sults show that it is possible solve this task and thus infer all
edge directions, if we are willing to make assumptions about
the causal mechanism (Peters, Janzing, and Scholkopf 2017;
Shimizu et al. 2006). One such assumption is the principle of
independent mechanisms, which postulates that the causal
mechanism (i.e. the conditional distribution Pefrecticause) 15
independent of the distribution of the cause Py (Janz-
ing et al. 2012; Sgouritsa et al. 2015). Vice versa, it is un-
likely to find such an independence for the anti-causal di-
rection. In practice, it is difficult to measure the indepen-
dence between mechanism and cause directly. Thus, many
recent approaches build upon an algorithmic version of this
principle, the algorithmic independence of conditionals pos-
tulate (Janzing and Scholkopf 2010). This postulate states
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that if X — Y is the true graph, the Kolmogorov com-
plexity of the factorization of Pxy for the causal model,
ie., K(Px) + K(Pyp), is shorter than for the anti-causal
model K(Py) + K(Pxyy). If Kolmogorov complexity was
computable, we could infer the causal direction between a
pair X and Y by comparing those quantities.

Since Kolmogorov complexity is not computable, prac-
tical instantiations of the above postulate, build upon
two-part Minimum Description Length (MDL) (Rissa-
nen 1978). Methods based on this idea are among the
state-of-the-art for cause-effect inference on discrete (Bud-
hathoki and Vreeken 2017a,b), continuous (Kalainathan
2019; Marx and Vreeken 2019; Mitrovic, Sejdinovic, and
Teh 2018; Tagasovska, Chavez-Demoulin, and Vatter 2020)
and mixed-type data (Marx and Vreeken 2018). Despite the
success of two-part MDL approaches in causal inference,
the link between the theory of algorithmic independence and
practical encodings is crude at best. While the postulate, for-
mulated in terms of Kolmogorov complexity, only compares
the complexities of the factorizations of the true distribu-
tion, e.g., K(Px) + K(Pyx), the MDL formulations consider
the data with respect to a model under consideration and
the model itself. Slightly abusing the notation, we show that
those methods rather approximate

K(Px)+ K(x | Py) + K(Pyx) + K&y | x, Pyix) (1)

instead of K(Px) + K(Pyx); and similarly so for the inverse
direction. Simply put, an explicit compression of the data
x and y does not appear in the postulate itself, but only in
the MDL approximation. Naively including the data breaks
the asymmetry between the causal and anti-causal direction
since information is symmetric. That is, given the shortest
programs x* and y* to compute x resp. y, K(x) + K(y | x*) =
K(y) + K(x | y*) holds up to an additive constant. Hence,
it is crucial to analyze the link between both concepts more
thoroughly, which is what we do in this paper.

In particular, starting from the MDL framework, we first
derive a two-part formulation of the algorithmic indepen-
dence of conditionals in terms of Kolmogorov complexity
(building upon Eq. 1). Then, we prove that our new formula-
tion leads to an equivalent inference principle as the original
postulate, which closes the cycle to connect both ideas. As a
corollary, we investigate the implications of our findings for
joint encodings, which encode data and model jointly. We
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Figure 1: Illustration of Reichenbach’s Common Cause
Principle: X and Y are two dependent random variables.
Their dependence is either due to an unobserved confounder
Z (middle), or one of the two causes the other, i.e., either X
causes Y (left) or Y causes X (right).

emphasize that for such encodings is important to encode the
model independent of the data, as otherwise the asymmetry
between the description length of the causal and anti-causal
model might vanish.

This paper is organized as follows. We discuss the prin-
ciple of independent mechanisms in Sec. 2 and state the al-
gorithmic independence of conditionals postulate in Sec. 3.
Then we review two-part MDL approximations of this pos-
tulate in Sec. 4 and provide our main result, the link between
both inference criteria in Sec. 5. In Sec. 6 we discuss practi-
cal implications of our findings for joint descriptions and in
Sec. 7, we round up with a conclusion.

2 The Principle of Independent Mechanisms

Before we introduce the algorithmic independence of con-
ditionals postulate, we first discuss its statistical equivalent,
the principle of independent mechanisms.

To illustrate the problem, we will first consider the small-
est working example. That is, assume we are given two de-
pendent random variables X and Y for which we want to
infer the underlying causal graph from observational data.
That is, we assume the data is passively collected and rep-
resents an i.i.d. sample of joint distribution Pxy. Accord-
ing to Reichenbach’s common cause principle (Reichenbach
1956), the dependence between X and Y can be explained by
three possible graphs.

Definition 1 (Reichenbach’s Common Cause Principle)
If two random variables X and Y are statistically dependent
(X XY), then there exists a third variable Z that causally
influences both, that is X «— Z — Y. As a special case, Z
may coincide with either X or Y, which results in the causal
graphs X — Y resp. X « Y. See Figure 1 for illustration.

It could also be that the dependence between X and Y
is due to a combination of the above graphs, e.g. X — 7Y,
X « Z — Y. In this paper, however, we assume all causal
relations to be acyclic and further assume causal sufficiency,
i.e. all relevant variables are observed. Further, we assume
that there is no selection bias. Thus, we only need to decide
between X — Y and X « Y, which is already a difficult
problem since these DAGs are Markov equivalent. Hence,
it is not possible to tell apart both graphs if we rely on a
constraint-based causal discovery approach (Pearl 2009).

This is, however, not the end of the story. We can dis-
tinguish X — Y from X < Y if we additionally make

assumptions about the generating mechanism. A very gen-
eral such assumption, which has gained a lot of attention
in recent years, is the principle of independent mechanisms,
which focuses on the possible factorizations of the joint dis-
tribution Pyy. In particular, we can write Pxy as the prod-
uct PxPyx or PyPxpy; but why does this help? Consider an
example inspired by (Peters, Janzing, and Scholkopf 2017,
Ch. 2.1), in which the cause X corresponds to the altitude
and the effect Y to the temperature as measured for different
cities. Assume we consider a set of different cities from the
same climate zone. If we observe the altitude for a random
city, we will have a mechanism in mind to derive the cor-
responding temperature value (i.e. Py|x), which is indepen-
dent of Py. Further, we can make a thought experiment and
think about how the temperature would change, if we were
to change the altitude of the city, e.g., by magically lifting
it into the air. Vice versa, it is hard to imagine that increas-
ing or decreasing the temperature in a city, e.g., by putting
on the heating system in every house, will change the al-
titude. In other words, the independence of the mechanism
does not hold for the anti-causal direction: the mechanism
Pxjy would need to take a rather particular form to be inde-
pendent of Py, which only holds in specific settings, such as
a linear model with both the cause and additive noise being
Gaussian distributed (Peters, Janzing, and Scholkopf 2017).
More generally, we can formulate the principle of indepen-
dent mechanisms as follows (Janzing and Scholkopf 2010;
Peters, Janzing, and Scholkopf 2017).

Postulate 1 (Principle of Independent Mechanisms)

The causal generative process of a systems variables is
composed of autonomous modules that do not inform or
influence each other. In the probabilistic case, this means
that the conditional distribution of each variable given its
causes (i.e., its mechanism) does not inform or influence the
conditional distributions of other variables.

Projected on our two-variable example, if we assume that
the principle of independent mechanisms holds, we get that
Px 1 Pyx, while the same does not necessarily hold for the
factorization w.r.t. the anti-causal direction. There exist sev-
eral approaches that aim at using this asymmetry to infer
the causal direction between two random variables from ob-
servational data (Janzing et al. 2012; Sgouritsa et al. 2015);
in practice, however, it is difficult to precisely estimate this
dependence. Therefore, we focus on the information theo-
retic variant of this principle (Janzing and Scholkopf 2010),
which initiated the development of MDL-based estimators,
that are among the state-of-the-art in the field (Kaltenpoth
and Vreeken 2019; Marx and Vreeken 2019; Mitrovic, Se-
jdinovic, and Teh 2018; Tagasovska, Chavez-Demoulin, and
Vatter 2020).

3 The Algorithmic Model of Causality

In the following, we first introduce the algorithmic model
of causality and the algorithmic independence of condition-
als. After that, we state the commonly used two-part MDL
approximation (Budhathoki and Vreeken 2017b).

Since the algorithmic model of causality is defined
through Kolmogorov complexity, we will first provide a



brief introduction to that topic. Intuitively, the Kolmogorov
complexity of a finite binary string x is the length of the
shortest program that can output x and then halt. The idea is
that the more structure of a string can be expressed algorith-
mically as opposed to just printing its verbatim, the smaller
is its Kolmogorov complexity.

Formally, we will in this paper refer to prefix Kolmogorov
complexity (Kolmogorov 1965; Li and Vitdnyi 2019).

Definition 2 (Kolmogorov Complexity) The prefix Kol-
mogorov complexity of a finite binary string x is the length
of the shortest self-delimiting binary program p* for a uni-
versal prefix Turing machine U that generates x, and then
halts, i.e.,

K(x) = min{|p| | p € {0,1}", U(p) = x} .

To define conditional Kolmogorov complexity of a binary
string x given string y, we provide y as input to the program
that computes x for free, that is

K(x|y) =min{lg| | g € {0, 1}, U(y, q) = x} .

Finally, building upon the above definitions, we can define
the algorithmic equivalent to mutual information, which we
need below. For two binary strings x and y, algorithmic mu-
tual information (Chaitin 1975) is defined as

Ix(x;y) = K(x) + K(y) = K(x,y) .

Simply put, algorithmic mutual information is greater than
zero if we can extract more structure by jointly compress-
ing x and y than with two individual programs. Equivalently,
we can define 14 as K(x) + K(y | x*), which holds up to

an additive constant, which we denote by = Similarly, we
could have inequalities which hold up to an additive con-

stant, which we write as ; The x* in the conditional refers to
the shortest program that describes x. Note that if we would
instead use x in the conditional, the equality would only hold
up to a logarithmic constant dependent on x—i.e. a constant
in O(log K(x)), which breaks the symmetry of the formula-
tion (Li and Vitanyi 2019).

Now that we discussed the preliminary concepts, we can
state the algorithmic model of causality (AMC) (Janzing
and Scholkopf 2010), which was proposed as an algorith-
mic equivalent of the statistical model of causality. Simply
put, we can compute the value of X with a program of con-
stant complexity that gets as input the data over the parents
of X in the corresponding causal graph, and data w.r.t. an
independent noise term.

Postulate 2 (Algorithmic Model of Causality) Ler G be a
DAG formalizing the causal structure among the strings
X1y...,Xm. Then every x; is computed by a program q; with
length O(1) from its parents pa; and an additional input n;.
We write
xi = qi(pa;, ni) ,

meaning that the Turing machine computes x; from the input
pa;, n; using the additional program q; and halts. The inputs
n; are jointly independent, i.e.,

nipllng,...,0i-1, vl My

Janzing and Scholkopf (2010) justified this model by
showing that similar to the statistical model, we can also de-
rive an algorithmic version of the causal Markov condition.
That is, the algorithmic Markov condition (AMC) states that
the joint complexity over all nodes is given by the sum of
the complexities of each individual node given the optimal
compression of its parents

K(xtoooxm) = ) KGxi | pay) . @)
i=1

Due to the symmetry of information, i.e.,
K@) +K@y|x) = K@) +K(x [y,

the algorithmic Markov condition only allows for identi-
fying the Markov equivalence class. To be able to distin-
guish between Markov equivalence classes, Janzing and
Scholkopf (2010) further postulated the algorithmic equiv-
alent of the principle of independent mechanisms.

Postulate 3 (Algorithmic Independence of Conditionals)
Let G be a causal DAG over a set of m variables
X = (Xy,...,X,) with joint distribution Px, which is lower
semi-computable, that is, K(Px) < oo. A causal hypothesis
is only acceptable if the shortest description of the joint
distribution Py is given by the concatenation of the shortest
descriptions of the Markov kernels, i.e.,

m

i=1
where Pa; are the parents of X; in G. Equivalently,

+

La(Pxipays - - -5 Px,lPa,) = 0 .

If we apply the above postulate to the case where the true
graph only consists of the edge X — Y, we get that

La(Px; Pyx) = 0. 3)

Note that it is assumed that this independence only holds
for the true causal direction. For additive noise models, for
example, it has been shown that for the anti-causal direction
we get a significant dependence (Janzing and Steudel 2010),
that is, I4(Py; Pxjy) > 0. If we combine those results, we
can derive an inference rule as follows. If X — Y is the true
graph, then

K(Py) + K(Pyyx) < K(Py) + K(Pxy) . )

In other words, we can infer the true causal direction by se-
lecting the factorization with the smallest Kolmogorov com-
plexity. To use this idea in practice, we first need to solve
two problems. First, Kolmogorov complexity is not com-
putable (Li and Vitanyi 2019), and second, we are not given
the true distribution but just a limited number of data points.
A principled way to solve at least the first part of the problem
is to approximate Kolmogorov complexity via the Minimum
Description Length principle, which we explain below.



4 MDL as a Practical Solution

The Minimum Description Length (MDL) princi-
ple (Griinwald 2007; Rissanen 1978) is a practical
variant of Kolmogorov Complexity, which approximates K
from above. Instead of considering all programs, we restrict
ourselves to a certain model class M, for example, a certain
class of parametric probability distributions. Given data D,
which may represent a sample from a distribution Py, our
goal is to find that model M* € M, such that

M* = argmin L(D | M) + L(M) , 5)

MeM

where L(M) is the length in bits needed to describe the
model M or identify M within the model class M, and
L(D | M) is the length in bits of the description of data D
given M. This specific version of MDL is also referred to
as two-part or crude MDL. As an example, consider that
M is the model class which refers to a multinomial distri-
bution with k categories. In this case M refers to a specific
k-dimensional parameter vector . Accordingly, L(M) mea-
sures the complexity of identifying M € M or describing
the parameter vector 0, and L(D | M) refers to the negative
log-likelihood of the data D, under the assumption that D
follows a multinomial distribution with parameter vector 6.
That is, we encode a single data point x as —log P(x | 6).
Note that by taking the negative logarithm with log base 2,
we arrive at a code length in bits. For more details to MDL,
we refer to Griinwald (2007).

The first idea on how the algorithmic independence of
conditionals could lead to an MDL-based inference rule was
sketched out by Janzing and Scholkopf (2010), however,
they do neither instantiate nor evaluate this idea in prac-
tice. They suggest that, the probabilistic models Py and IA’Y‘ Xs
which are learned from a finite number of observations, to-
gether define a joint distribution Py_,y, which is not neces-
sarily equal to the description of Py_ in the inverse direc-
tion. As common in MDL, they first encode the complexity
of the model, i.e., 13X and f’y|x, and then encode the data
given the model as the negative log-likelihood w.r.t. Py_y
resp. Py_x and select the direction with the smaller com-
plexity as the causal one.

Budhathoki and Vreeken (2017b) suggested a more prac-
tical approximation of Eq. 4 via two-part MDL as follows.
For the causal direction, we define a model as My_,y =
(Mx, Myx) from the class Mx_,y = Mx x Myx that best
describes the data over Y by exploiting as much structure of
X as possible to save bits. By MDL, we identify the optimal
model Mx_,y € Mx_y for data (x",y") over X and Y as the
one minimizing

Lx—y = L(Mx) + L(x" | Mx) + L(Myx) + L"|x", MY\X)6-
(6)
We can define Ly_x analogously and infer X — Y if
Ly,y < Ly_x, X « Y if Lx_,y > Ly_x, and do not de-
cide if both terms are equal. Consequently, to use this idea in
practice, we need to define the model class. Budhathoki and
Vreeken (2017b) implemented their idea for multivariate bi-
nary data and used binary trees as their models. Following
this example, two-part MDL approaches have been devel-
oped for univariate discrete pairs (Budhathoki and Vreeken

2017a; SY and Nagaraj 2020), univariate continuous random
variables (Kalainathan 2019; Marx and Vreeken 2017, 2019;
Mitrovic, Sejdinovic, and Teh 2018; Tagasovska, Chavez-
Demoulin, and Vatter 2020) and multivariate mixed-type
data (Marx and Vreeken 2018). Further, Kaltenpoth and
Vreeken (2019) adapted this idea to tell whether two random
variables are causally related or whether they are likely to
be confounded and Mian et al. (2021) build upon a two-part
MDL score to discover the complete causal DAG G between
a set of random variables!

Although these approaches perform well in practice, Eq. 4
only considers the true distribution, while Eq. 6 is formu-
lated via a two-part description of a model and the data given
this model. In the following section, we will present our
main result and formally analyze the connection between
both inference rules. We bridge the gap between both vari-
ants by deriving a two-part variant of Eq. 4, in terms of Kol-
mogorov complexity, and show that on expectation both ver-
sions lead to the same inference.

5 Linking Algorithmic Independence and
Two-Part Descriptions

Given an i.i.d. sample x" drawn from a computable distribu-
tion P, the shortest encoding of the data that is theoretically
possible converges to the Shannon entropy

H(P) == P(x)log P(x) ,

as proven by Shannon’s source coding theorem (Shannon
1948). Hence, if P is a computable distribution with param-
eter vector 6, the sample estimate # will in the limit con-
verge to the true parameter. Therefore, we could in the limit
encode the data x" conditional on P to arrive at the short-
est code-length of the data given the model that describes
P. Thus, the shortest encoding for our causal setup can be
achieved if the model class My contains Px and similarly,
Myx contains Pyx. Slightly abusing the notation, we define

Ly_y = L(Px)+L(x" | Px)+L(Pyx)+LO" | x", Pyx) . (7)

The above equation already comes close to an MDL ver-
sion of the algorithmic independence of conditionals, how-
ever, we still need to explain how the data encoded by the
model fits into the equation. To this end, we will show that
the equivalent formulation of L} _,, in terms of Kolmogorov
complexity, i.e.,

Kx_y := K(Px) + K(x | Px) + K(Pyx) + K(y | x, Pyx) ,

is on expectation equal to K(Px) + K(Pyx) + H(Pxy), where
H(Pyxy) relates to the Shannon entropy of the joint distribu-
tion Pxy. The analogoue holds for the anti-causal direction,
that is, on expectation Ky_,x is equal to K(Py) + K(Pxy) +
H(Pyxy). Thus, assuming that the algorithmic independence

!"There also exists approaches for continuous i.i.d. data (Mooij
et al. 2010) and time series data (Hlavackova-Schindler and Plant
2020) based on the Minimum Message Length (Wallace and Boul-
ton 1968), however, these do not directly build upon Eq. 4.



of conditionals holds, we get that on expectation the inequal-
ity between cause and effect holds similar to Eq. 4. That is,

+
KX—>Y < KY—»X 5

if X — Y is the true causal direction.

Before we prove this statement, we need to introduce a
more general Lemma that links Kolmogorov complexity to
Shannon entropy (Li and Vitanyi 2019, Ch. 8.1).

Lemma 1 Let H(P) be the entropy of a computable proba-
bility distribution P and H(P) < co. Then,

D POK(x| P) - H(P)| < O(D), @®)

with a constant precision that is independent of x and P.

Note that it is important to sum over P(x)K(x | P) and
not over P(x)K(x), as otherwise the inequality becomes less
precise and only holds up to a logarithmic constant cp =
K(P)+O(1), which is dependent on P (Li and Vitanyi 2019,
Ch. 8.1). For conditional codes such as K(y | x, Pyjx) assume
that given input x there exists an O(1) program that selects
the correct probability table Pyjx-, from the auxiliary condi-
tional probability table that is given as input. Based on these
insights, we can derive of our main theorem.

Theorem 1 Given distribution Pxy with finite support and
rational values, for which all factorizations are lower semi-
computable, i.e., K(Px) + K(Pyix) + K(Py) + K(Pxy) < oo,
it holds that

D07 Py, ) (K(P)+K(x | P)+K(Pyx)+K(y | x, Pyx))
x oy

is equal to K(Px) + K(Pyxx) + H(Pxy) up to an additive
constant that is independent of Px and Pyjx. Equivalently,
K(Py) + K(Pxyy) + H(Pxy) is equal to the expectation over
K(Py)+K(y | Py)+K(Pxy)+K(x |y, Pxy) up to an additive
constant independent of Py and Pxyy.

Proof: In the following, we prove the statement for the fac-
torization Px Py x; the proof for the factorization Py Pxyy fol-
lows analogously. First, note that we can compute Px(x) as
Px(x) = ¥, Pxy(x,y). Thus, we can rewrite the first part as

(k)= >0 ) Pxy(63) (K(P) + K(x| Px))  (9)
= " Px(0) (K(Py) + K(x | Px)) (10)

= K(Px) + H(Py) . (11

To get from line 10 to 11, we apply Lemma 1. Similarly, we
can proceed with the second part

(x2) = Z Z Pxr(x,y) (K(Py) + K(v | x, Py))  (12)

= Z Px(x) Z B ) (k(Py) + Ky | 3 Pyw)

Px(x)

(13)

- KEno+ 3P0 3 PED Ky | x Py
(14)

£ K(Pyx) + ) Px(x) )" Pyx—e K | Pyix=s)
i } (15)
= K(Pyx) + ), Px()H(Pyx=y) (16)
= K(Pyx) + H(Pyx) . (17)

Importantly, in the step from line 14 to 15, we assume that
we can select the correct probability table Pyx-, form inputs
Pyx and x with an O(1) program.

If we combine (x1) and (x;), we get K(Px) + K(Pyx) +
H(Pxy) and obtain an equivalent result for the inverse
direction due to the symmetry of the joint entropy. O

Although the theorem is only stated for two random vari-
ables, it is straight forward to extend it to the general for-
mulation of the algorithmic independence of conditionals.
In particular, we have

m
Z Z Z Pxpa,(xi, pa;) (K(Px,pa,) + K(xi | pa;, Px,pa,))

i=l1 x; pa;

is equal to Y7, K(Px,pa,) + H(Px,,..x,) up to a constant.
This concludes the main contribution of this paper. In the
following section, we point out that the results of Theorem 1
do not necessarily hold for joint descriptions and discuss im-
plications of these observations for MDL encodings.

6 Connection to Joint Descriptions

The optimization goal of a two-part encoding, e.g., two-part
MDL, is often formalized as finding that model M* € M,
which mimimizes the joint costs of data and model, that is,
M* = argmin L(D, M) .
MeM

Hence, intuitively we could rewrite Ly_y as L(x", Mx) +
LQ", Myx | x"). The problem is, as follows. If we rigor-
ously expand the second term, we need to encode the model
Myx given the data x", i.e.,

L', Myxx | x") = LMyjx | x") + LO" | X", Myx) .

In terms of MDL, we can argue that the model is indepen-
dent of the data x". In general, while technically possible, it
is not common to encode a model conditioned on the data.
Thus, we do not elaborate further on this ambiguity and
jump into Kolmogorov land.



In particular, assume that X — Y is the true causal model.
If we were to prove that K(x, Px) + K(y, Pyjx | x) is on av-
erage equal to K(Px) + K(Pyx) + H(Pxy), the proof would
become slightly more involved. It is inevitable, however, that
to split off Pyx from K(y, Pyx | x) we need to keep x in the
conditional term. That is, we arrive at the term K(Py;x | x)
and would need to argue that it is equal to K(Pyx). Since
Px 1L Py)x and x is sampled from Px, we can indeed con-
clude that K(Pyx | x) = K(Pyx) + O(1). For the anti-causal
direction, this independence does not hold, i.e., Py & Pxy.

Hence, K(Pxyy | y) ; K(Px)y). Due to this asymmetry, we
get that

DU Prr(x XK, Py) + K(x, Py 1) (18)

x oy
< K(Py) + K(Pxy) + H(Pxy) (19)
S K(Py) + K(Pyp) + H(Pxy) . (20)

In other words, an approximation of this formulation does
not allow us to distinguish X — Y from Y — X, because
we cannot guarantee that the inequality between the causal
and anti-causal direction still holds. Thus, encodings that ap-
proximate the joint description with the goal to do causal in-
ference should be designed with caution, as the description
length of the conditional model should be independent of the
data of the conditioning variable.

7 Conclusion

In this paper, we focused on causal discovery from obser-
vational data. We revisited the idea of using two-part MDL
encodings to approximate the postulate of algorithmic in-
dependence of conditionals, which allows us to infer causal
DAGs beyond Markov equivalence classes. Our main con-
tribution is that we link this postulate to an alternative for-
mulation, which considers both the complexity of the data
conditioned on the distribution as well as the complexity of
the distribution. Thus we arrive at a two-part description in
terms of Kolmogorov complexity Kx_,y, which has a one-
to-one mapping to the proposed two-part MDL approxima-
tion Ly_,y (Budhathoki and Vreeken 2017b). In addition,
we prove that approximating Kx_,y is equivalent to approxi-
mating the algorithmic independence of conditionals, which
closes the cycle. We further analyze the implications of our
new formulation for joint descriptions of data and model and
conclude that it is important that the model for the condi-
tional distributions, e.g., Myyx is independent of the data x",
resp. that My is independent of y".

In a nutshell, drawing this connection is crucial to under-
stand how two-part MDL approaches can be used to approx-
imate the algorithmic independence of conditionals. We ex-
pect that these insights make MDL-based methods for causal
inference more accessible to a broader audience.
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