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Abstract—Textual redundancy is one of the main challenges
to ensuring that legal texts remain comprehensible and main-
tainable. Drawing inspiration from the refactoring literature in
software engineering, which has developed methods to expose and
eliminate duplicated code, we introduce the duplicated phrase de-
tection problem for legal texts and propose the DUPEX algorithm
to solve it. Leveraging the Minimum Description Length principle
from information theory, DUPEX identifies a set of duplicated
phrases, called patterns, that together best compress a given input
text. Through an extensive set of experiments on the Titles of the
United States Code, we confirm that our algorithm works well
in practice: DUPEX will help you simplify your law.

Index Terms—law, information theory, minimum description
length, text mining, sequence mining

I. INTRODUCTION

Over the past decades, law has become increasingly com-
plex, as evidenced, e.g., by a growth in volume, hierarchical
structure, and interconnectivity of legal documents from the
legislative and executive branches of government [9, 4]. As
a consequence, ensuring the comprehensibility and maintain-
ability of the law has become an increasingly challenging task.
One of the main obstacles to achieving this goal is textual
redundancy. Consider, for example, § 78o(c)(1) of Title 15 of
the United States Code, which prohibits fraud in the context
of securities dealings (emphasis added):

(A) No broker or dealer shall make use of the mails or any
means or instrumentality of interstate commerce to effect any
transaction in, or to induce or attempt to induce the purchase
or sale of, any security (other than commercial paper, bankers’
acceptances, or commercial bills), or any security-based swap
agreement by means of any manipulative, deceptive, or other
fraudulent device or contrivance.

(B) No broker, dealer, or municipal securities dealer shall
make use of the mails or any means or instrumentality of
interstate commerce to effect any transaction in, or to induce
or attempt to induce the purchase or sale of, any municipal
security or any security-based swap agreement involving a
municipal security by means of any manipulative, deceptive,
or other fraudulent device or contrivance.

(C) No government securities broker or government secu-
rities dealer shall make use of the mails or any means or
instrumentality of interstate commerce to effect any transac-
tion in, or to induce or to attempt to induce the purchase
or sale of, any government security or any security-based

swap agreement involving a government security by means
of any manipulative, deceptive, or other fraudulent device or
contrivance.

It is intuitively clear that the information density of this
passage is extremely low, and that the salient point—i.e., that
United States federal law (within its limits) prohibits fraud
by a broker or dealer in effecting or inducing any transaction
in a security or a securities-based swap agreement—could be
communicated much more concisely. Moreover, some phrases,
such as the underlined fragments, occur multiple times in
exactly the same wording.1 In analogy to the code smell
duplicated code from the software engineering literature [5],
we refer to such phrases as duplicated phrases.

If we were able to identify duplicated phrases reliably and at
scale, we could refactor the law, eliminating redundancies to
make it both more readable and easier to maintain. We refer to
this task as the duplicated phrase detection problem. Despite
its close connections to classical challenges from natural
language processing and sequence mining, to the best of our
knowledge, there exists no theoretically sound and practically
feasible solution to our problem that could account for the
peculiarities of legal documents. If we approach the problem
naı̈vely, e.g., treating any sequence of tokens above a certain
minimum phrase length that has a certain minimum occurrence
frequency as a duplicated phrase, we face problems familiar
from frequent pattern mining (see [1] for an overview): We get
swamped in results because duplicated phrases become practi-
cally downward closed (i.e., any minimum-length subsequence
of a duplicated phrase is also a duplicated phrase), and which
or how many duplicated phrases we identify depends heavily
on our chosen parameters. Therefore, drawing inspiration from
pattern set mining (see, e.g., [22]), rather than identifying
all duplicated phrases, our goal becomes to identify a set of
duplicated phrases whose refactoring we expect to yield the
biggest text quality improvements.

We propose to solve the duplicated phrase detection problem
in the legal domain using the Minimum Description Length
(MDL) principle from information theory [8]. By the MDL
principle, we seek to identify those phrases as duplicates that
together contribute most to the redundancy we observe—in the

1Or in almost exactly the same wording: Note the additional to in 15 U.S.C.
§ 78o(c)(1)(C) (typeset in bold for emphasis).
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sense that their systematic removal, replacement, or rewriting
helps us compress the given legal text most efficiently. This
approach allows us, inter alia, to detect redundancy in the
United States Code in a principled, scalable way, leading to
actionable recommendations for improving its textual qual-
ity. Thus, our work highlights the potential of information-
theoretic approaches to data mining in the legal domain.

The remainder of our work is structured as follows. We
introduce our basic notation and give a primer on MDL in
Section II, before describing our algorithm in Section III.
Having discussed related work in Section IV, we showcase our
experimental results and compare them to those of alternative
approaches in Section V. After discussing the current limita-
tions of our method and sketching avenues for future research
in Section VI, we wrap up with a conclusion in Section VII.
All our data, code, and results are publicly available.2

II. PRELIMINARIES

Our data is a legal document S, which we interpret as a
sequence of tokens. These tokens roughly correspond to words
and are drawn from a vocabulary V . The frequency in S of a
token v ∈ V is the number of occurrences of v in S. We refer
to a duplicated phrase in the result set P of our algorithm as
a pattern p ∈ P . Denoting sets by curly letters and sequences
by straight letters, we use | · | to signify both set cardinality
and sequence length, where sequences of length n are called
n-grams (unigrams for n = 1 and bigrams for n = 2).

At the heart of our algorithm lies the Minimum Description
Length (MDL) principle [8]. MDL is a practical approximation
of Kolmogorov Complexity, which measures the complexity
of a given object as the length in bits of the shortest program
computing it on a universal Turing machine, and is generally
uncomputable [11]. Given a model classM for data D, MDL
seeks to select the model M ∈ M that obtains the best
compression of D, which we require to be lossless to ensure
fair comparisons between models. We use what is known as
two-part MDL, encoding the model and the data separately.
That is, we are looking for the model M that minimizes the
sum of bit lengths L(M) + L(D | M), where L depends on
our encoding of the model and the data. The thought model
underlying such an encoding is that a sender wishes to transmit
the data to a receiver, using as few bits as possible. Hence, we
desire a model that helps the sender save more bits on the data
than its transmission costs, and among all models satisfying
this criterion, we are interested in the one that maximizes the
ratio of its associated savings and its associated costs.

In our case, our data is the legal document S, i.e., D = S,
our model class M contains all possible sets of sequences
created from V , and our model M is the set of patterns (i.e.,
duplicated phrases) returned by our algorithm, along with
a cover C of S using elements of V ∪ P , i.e., M = P
(where we omit the cover to reduce notational clutter).3 Thus,
L(D | M) = L(S | P) can be interpreted as the number

2https://doi.org/10.5281/zenodo.5534329
3Note that C cannot be inferred directly from V ∪P if there exist multiple

ways to cover S using elements from V ∪ P (which will often be the case).

of bits we need to communicate S, assuming that we know
the duplicated phrases in our model, and L(M) = L(P) tells
us how many bits we need to communicate the duplicated
phrases themselves. Therefore, the length of the model acts as
a regularizer that eliminates redundancy from our results and
prevents us from reporting duplicated phrases that might not
merit refactoring.

III. ALGORITHM

With our preliminaries in place, we now give a high-level
overview of our procedure (III-A), then describe the MDL
encoding steering this procedure (III-B), and finally sketch
the preprocessing steps we perform on our input data (III-C).

A. Overview

Our basic algorithm, which we call DUPEX (for Duplicated
phrase extractor), proceeds as follows. Given an input sequence
S, we maintain a cover C of S by tokens and identified
patterns, and iteratively perform the following steps:

1) Compute and count bigrams (treating a pattern as a
single token).

2) Select the bigram maximizing the product of phrase
length (i.e., the sum of the number of tokens in its com-
ponents) and occurrence frequency as the next candidate.

3) Check if replacing all occurrences of the candidate by a
symbol representing the pattern reduces the description
length of S, as measured using our encoding (described
in Subsection III-B).

a) If so, add the candidate to P , remove the elements
of which the candidate is composed if they can be
pruned from the pattern set without increasing the
description length, and continue from Step 1.

b) Otherwise, remove the candidate from the set of
bigrams, exclude it from consideration until its fre-
quency increases again, and continue from Step 2.

We iterate the steps described above until we run out of
bigram candidates or meet a user-specified stopping criterion
(e.g., exceeding a maximum number of unsuccessfully tested
bigrams). Such a stopping criterion needs to be chosen care-
fully because, e.g., a threshold set too low can prevent us from
finding long duplicated phrases. Similar considerations apply
to the choice of our input text: Choosing a long text (e.g.,
the entire United States Code) slows down computation but
allows us to find duplicated phrases even if their occurrences
are sparsely scattered across its different parts; and choosing
shorter texts (e.g., considering each Chapter of the United
States Code separately) enables us to find longer duplicated
phrases faster—but only under the condition that they occur
multiple times in the individual text.

Note that since our candidate selection criterion (Step 2)
combines phrase length and occurrence frequency, and candi-
date acceptance depends on a reduction in description length
(Step 3), the minimum phrase length and the minimum occur-
rence frequency for including a candidate in our results are
determined implicitly and adaptively, i.e., the user does not
need to choose these parameters. Furthermore, our algorithm
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only makes few passes over our input sequence S, which is
crucial to ensure its scalability to legal documents.

B. Minimum Description Length Encoding

In Step 3 of our algorithm, we enforce our goal of min-
imizing L(M) + L(D | M) = L(P) + L(S | P), i.e., of
finding the (approximately) best-compressing pattern set P
(and accompanying cover C) for S. To determine the length of
our pattern set, L(P), and the length of our sequence S given
that set, L(S | P), we use a variant of the MDL encoding for
event sequences introduced in the SQUISH algorithm [2].

One core concept underlying this encoding is that of a code
table CT , i.e., a mapping from elements s ∈ V ∪ P to their
associated codes and their code lengths L(s). We use Shannon-
optimal codes, such that L(s) is given as

L(s) = − log
usage(s)∑

s′∈V∪P
usage(s′)

,

where usage(s) refers to the number of times s is used in the
current cover C of our sequence S. Hence, the encoded length
of S given P (and C) is

L(S | P) = LN(|S|) +
∑

s∈V∪P
usage(s) · L(s) ,

where the first term communicates the length of S using the
universal code for positive integers [17].4

To transmit the pattern set P and enable the receiver to
derive the code lengths L(s) for s ∈ P , we need to encode
|P| as well as, for each pattern p ∈ P , its cardinality |p|, which
elements from V it consists of (in order), and how often it is
used in C. Consequently, we also need to communicate the
cardinality of V , and—to allow us to use Shannon-optimal
codes when specifying the elements of each p ∈ P—the
frequency of each v ∈ V in S. Therefore, using indices into
weak compositions to communicate the frequencies of v ∈ V
in S and p ∈ P in C,5 the total encoded length of P is

L(P) = LN(|V|) + log

(
|S| − 1

|V| − 1

)
+ LN(|P|)

+ LN(usage(P)) + log

(
usage(P)− 1

|P| − 1

)
+
∑
p∈P

L(p) ,

where usage(P) =
∑
p∈P

usage(p), and

L(p) = LN(|p|) +
∑
v∈p

− log
frequency(v)

|S|
.

When testing a pattern p for inclusion in (removal from)
our result set in Step 3 of our algorithm, we compute

∆(p | P) =
(
L(P) + L(S | P)

)
−
(
L(P ′) + L(S | P ′)

)
,

where P ′ = P∪{p} (P ′ = P \{p}), adding p to P (removing
p from P) if and only if ∆(p | P) > 0.

4For notational simplicity, in this paper, we assume that all inputs to LN
are greater than zero (avoiding the otherwise necessary +1 in calls to LN).

5A weak composition of an integer n is a way of writing n as the sum of
a sequence of non-negative integers.

C. Input Preprocessing

To transform a legal document into a sequence S for input to
our algorithm, we tokenize its text by adding whitespace char-
acters around all punctuation and then splitting on whitespace
characters. As an optional but recommended step preceding
this tokenization, we replace named entities of selected types
by correspondingly labeled placeholders. Which entity types
should be replaced and how this should be done depends on the
type of legal document considered. In our demonstration on the
United States Code, we replace dates, enumerations, amounts
of money, percentages, time periods, references, and term
definitions by the placeholders {date}, {enum}, {money},
{percentage}, {period}, {reference}, and {term}, respectively,
using regular expressions informed by domain knowledge. The
benefit of this preprocessing step is that it allows DUPEX to
discover parametrized patterns (e.g., “no later than {period}
after {date}”), thus identifying duplicated phrases that capture
redundancy at the level of semantic structure, rather than at
the level of individual words only.

IV. RELATED WORK

To the best of our knowledge, we are the first to ap-
proach the duplicated phrase detection problem in law from
the perspective of information theory. Existing related work
broadly falls into three categories: natural language processing,
sequence mining, and legal scholarship.

A. Natural Language Processing

In the natural language processing community, the problems
that are most closely related to our problem are document
similarity assessment and document similarity search. When
scalability is key, a popular strategy is to represent the
documents (e.g., sentences) as sets of words or sets of n-
grams (also known as k-shingles) and use hash functions to
approximate the Jaccard similarity of these sets, as done by the
popular MINHASH algorithm [3]. Furthermore, suffix arrays—
i.e., lexicographically ordered lists of all suffixes contained in
a sequence [14]—can be used to quickly identify exact text
duplicates. Both MINHASH and suffix arrays have recently
been used to deduplicate training data for language models
[10]. Unlike DUPEX, however, these methods are neither
parameter-free nor can they directly identify a set of duplicated
phrases using a theoretically sound selection criterion.

B. Sequence Mining

In sequence mining, information-theoretic approaches have
been introduced to overcome the limitations of traditional
frequent pattern mining methods (which tend to drown their
users in redundant results) and statistical pattern mining meth-
ods (which rely on complex and computationally demanding
inference procedures). SQUISH [2] is an extension of SQS
[21] to a pattern language that is richer than what we need
for our purposes, and hence, we deliberately keep the DUPEX
encoding much simpler than the SQUISH encoding. SEQUITUR
[16] is a linear-time online algorithm which mines patterns in
a sequence by learning a hierarchical grammar that produces



TABLE I
EXAMPLES OF DUPLICATED PHRASES IDENTIFIED BY DUPEX IN TITLE 15.

Pattern Count (Title 15) Duplicate Class(es)

necessary or appropriate in the public interest [and|or] for the protection of investors 13|138 adjective chain; variation
small business concerns owned and controlled by. . .

. . . [[service-disabled] veterans|women|socially and economically disadvantaged individuals] [31]|20|41|36 adjective chain; variation
committee on small business [of the house of representatives|and entrepreneurship of the senate] 54|43 named entity; variation
. not later than {period} after {date} , the [administrator|commission] shall 36|35 scoping; variation

security - based swap dealer or major security - based swap participant 66 noun chain
use of the mails or any means or instrumentality of interstate commerce 56 noun chain
[senate] committee on commerce , science , and transportation [of the senate] [10]|[44] named entity; variation
unfair or deceptive act [and|or] practice 16|33 noun chain; variation

under {reference} , the commission [may|shall] 19|20 scoping; variation
stamp , tag , label , or other [means of] identification [24]|10 noun chain; variation
. the term {term} has the meaning given [such|the] term in {reference} 10|12 scoping; variation
counterfeit , fictitious , altered , forged , lost , stolen , or fraudulently obtained 18 adjective chain

the sequence, all while traversing the sequence only once from
start to end. However, it is designed to operate on sequences of
characters, rather than on sequences of tokens (which feature
a much larger vocabulary), and its online nature sometimes
yields counterintuitive results (e.g., a duplicated phrase being
discovered twice with different hierarchical nestings).

C. Legal Scholarship

In the legal domain, scholars have long grappled with the
question of what constitutes “good” (in the sense of: high-
quality) law, but it is not until lately that they have considered
computational approaches to tackle it [18, 13, 6]. Our work
is complemented by interdisciplinary research—not aiming to
discover duplicates in legal documents—which explores the
promises and pitfalls of legal language simplification [15] or
uses concepts from information theory to formalize or measure
entropy in legal texts or legal interpretation [7, 20]. Ideas
from software engineering have rarely made their way into
the legal domain, one of the few exceptions being the work of
Li et al. [12]. This work adapts simple code quality metrics
to legal texts in order to quantitatively assess the quality of
the United States Code, but is not concerned with measuring
textual redundancy or extracting duplicated phrases.

V. EXPERIMENTS

To demonstrate that DUPEX works well in practice, we
conduct experiments on the 2019 version of the United States
Code. We implement DUPEX in Python and run it on the
preprocessed text of each Title separately, stopping after ten
thousand failures (i.e., when we have rejected ten thousand
pattern candidate),6 and evaluate the results both qualitatively
(V-A) and quantitatively (V-B). Finally, we compare our results
with those obtained for different failure thresholds, and those
produced by SEQUITUR (V-C). We run our experiments on
Intel E5-2643 CPUs with 256 GB RAM, and make all our
data, code, and results publicly available.7

6To put this choice into context: The longest Title of the United States Code
has a vocabulary size of over 17 000, and over 170 000 non-unique bigrams.

7https://doi.org/10.5281/zenodo.5534329

A. Qualitative Evaluation

To evaluate whether DUPEX extracts interesting duplicates,
i.e., repeated phrases that could be refactored to improve the
quality of the input text, we manually inspect the redundancies
discovered in each of the Titles of the 2019 United States
Code. Table II shows the longest duplicated phrase identified
by DUPEX for each of these Titles (where we break ties
first by the number of occurrences of the phrase in the Title,
then alphabetically). Many of the listed patterns correspond to
linguistic phrases, i.e., DUPEX manages to respect semantic
and syntactic boundaries without explicit knowledge of these
concepts, and quite a few of the patterns are parametrized
(that is, they contain placeholders). However, we also see some
artifacts of our preprocessing (e.g., in Title 8, we apparently
failed to replace a reference by {reference}). This suggests
that DUPEX could be used to improve the preprocessing of its
own input data, a point we return to in Section VI.

For fast analysis of all duplicated phrases, we group these
phrases, for each Title separately, by the cosine similarity of
their term vectors, using hierarchical clustering with Ward
linkage [23]. This allows us, inter alia, to identify sets of
duplicated phrases that are very similar among themselves.
Some illustrative examples of duplicated phrases from Title 15
are listed in Table I, which represents options and alternatives
with syntax familiar from regular expressions (namely, square
brackets for options and pipes for alternatives). For each
pattern, we report both its occurrence frequency in Title 15
and at least one duplicate class, i.e., a descriptive label for a
group of patterns with shared syntax or semantics.

While developing a full taxonomy of duplicate classes lies
beyond the scope of this paper, our examples already highlight
some elementary distinctions. First, much of the verbosity in
the United States Code is due to boilerplate term chains, e.g.,
recurring sequences of nouns or adjectives linked together by
the logical operators and or or. Term chains are a consequence
of the legislator’s desire to be extremely precise, perhaps
in an attempt to prevent unnecessary litigation. Duplicated
phrases consisting of term chains could be refactored by intro-
ducing abbreviating definitions. For example, the noun chain
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“stamp, tag, label, or other [means of] identification” could
be shortened to “identifier” with an accompanying, scoped
definition such as “For the purposes of {scope}, ‘identifier’
means stamp, tag, label or other (means of) identification.”
Given that variants of this chain occur over thirty times in
Title 15, its refactoring alone could save roughly half a page.

Second, some of the redundancy in the United States Code
stems from named entities, e.g., Committees of the United
States House of Representatives or the United States Senate,
which are often referenced in several different ways (for exam-
ple, the Senate Committee on Commerce, Science, and Trans-
portation is also referred to as the Committee on Commerce,
Science, and Transportation of the Senate). As the names of
these entities can change over time (e.g., the Senate Committee
on Small Business and Entrepreneurship used to be the Senate
Committee on Small Business until 2001), mentioning them in
legislation with variants of their names at the time of drafting
creates challenges for maintainability (e.g., incomplete text
updates when a name changes) and interpretability (e.g., users
wondering if two similar names reference different entities). To
resolve these challenges, duplicated phrases referencing named
entities could be abbreviated in displayed text and linked to
named entity records, giving the user the option to access their
full current name (and perhaps even a description and pointers
to other mentions of the entity) on click or on hover.8 This
would not only simplify the maintenance of the United States
Code, but it would also improve its readability: Just imagine
reading NIST for every mention of the National Institute of
Standards and Technology, or USPTO for every mention of
the United States Patent and Trademark Office.

Third, many duplicated phrases occur in several variations,
with patterns including logical operators (and vs. or), agents
(administrator vs. commission), normative verbs (may vs.
shall), scoping (parametrized legal duties or definitions), or
number (singular vs. plural; not listed in Table I). While some
of these variations are clearly intended and semantically or
syntactically necessary (e.g., variations in agents or number),
others appear to be mishaps (recall the excess to before
attempt in 15 U.S.C. § 78o(c)(1)(C) from Section I), and
yet others create interpretive uncertainty. The latter category
notably includes duplicated phrases involving variations of
logical operators, as the usage of these operators has not been
standardized (for example, or can be inclusive or exclusive,
and could also mean or, and and/or actually exists, e.g., in
7 U.S.C. § 451). Here, DUPEX can help legislators detect those
duplicates whose variations create unnecessary ambiguity, and
enforce that two phrases have identical wordings if and only
if they are intended to have identical meanings.

B. Quantitative Evaluation

Having ensured that DUPEX extracts meaningful duplicated
phrases whose refactoring could improve the maintainability
and comprehensibility of the United States Code, we move on

8The Legal Information Institute (https://www.law.cornell.edu/) currently
provides functionality for resolving mentions of term definitions (sometimes
with their associated scoping language) but not of general named entities.

to our quantitative evaluation. To this end, Figure 1 depicts the
length distribution of duplicated phrases containing at least five
tokens. We see that most of the identified patterns consist of
five to fifteen tokens, with the exception of patterns in Title 36
(Patriotic and National Observances), whose special role is
also visible in its top pattern from Table II.

Providing a quantitative window into the inner workings of
our algorithm, Figure 2 shows how DUPEX compresses our in-
put texts by including new duplicated phrases into (or pruning
obsolete duplicated phrases from) its model. Again, Title 36
plays a special role, achieving almost 40% compression in
less than 5 000 steps (light green). The Title taking almost
25 000 steps to finish is—unsurprisingly—Title 42 (The Public
Health and Welfare, dark purple), and the Title achieving
a compression of roughly 30% in less than 15 000 steps is
Title 26 (Internal Revenue Code, dark green). We conclude
that DUPEX discovers duplicated phrases that compress well,
such that the compression achieved by the algorithm can be
construed as a measure of the refactoring potential of the input
text, and the number of steps taken to obtain that compression
can be interpreted as a measure of its refactoring complexity.

C. Comparative Evaluation

Our evaluation so far has focused on DUPEX runs with
10 000 failures. The number of failures (henceforth: f ) is the
only parameter of our algorithm, impacting both its running
time and its results. To assess the robustness of our chosen
parametrization, we thus run DUPEX also for three other
choices of f : 1 000, 50 000, and 100 000. Analyzing running
time versus compression for our chosen values of f , as
depicted in Figure 3, we observe that our original parameter
choice of f = 10 000 identifies a reasonable trade-off between
running time and pattern quality: For this value, we regularly
achieve high compression while retaining reasonable speed.

To conclude our evaluation, we compare DUPEX with
SEQUITUR. The SEQUITUR equivalents of our patterns are
rules, which together form a grammar that the algorithm learns
to reconstruct the input text. The original SEQUITUR operates
at the character level and generates many low-level rules that
are hardly helpful for refactoring the law (e.g., rules such as
“en”, “re”, or “th”). For a fairer comparison, we therefore
amend the original algorithm to operate at the token level.
The output is a mapping from rule heads (i.e., unique rule
identifiers) to rule tails, where a rule tail contains tokens or
other rule heads. We postprocess this output to reconstruct the
full text in all rules, and compute, inter alia, how many rules
SEQUITUR finds in each Title, how many tokens these rules
contain, and how often they are used. As refactoring duplicated
phrases is worthwhile primarily for long duplicated phrases
that occur frequently, we ask how many patterns of minimum
phrase length five and minimum occurrence frequency ten
SEQUITUR identifies in each Title of the 2019 United States
Code, as compared to DUPEX. We find that in the median,
although SEQUITUR discovers almost 15 000 more patterns of
any kind, DUPEX discovers over fifty more patterns that are
long and frequent. This is likely due to the fact that SEQUITUR

https://www.law.cornell.edu/


TABLE II
LONGEST DUPLICATED PHRASE IDENTIFIED BY DUPEX IN EACH TITLE OF THE 2019 UNITED STATES CODE, WHERE LENGTH IS THE NUMBER OF TOKENS.

Title Pattern Length Count

1 committee on the judiciary of the house of representatives 9 8
2 modification of such regulations would be more effective for the implementation of the rights and protections under this

section
19 11

3 for the implementation of the rights and protections under this section ; and {enum} 14 11
4 tax , charge , or fee 6 19
5 ( including any applicable locality - based comparability payment under {reference} or similar provision of law 16 12
6 information within the scope of the information sharing environment , including homeland security information , terrorism

information , and weapons of mass destruction information
24 26

7 one or more of the terms of the draft accepted label as amended by the agency and requests additional time to resolve the
difference {enum} ; or {enum} withdraws the application without

32 17

8 oct . 14 , 1940 , ch . 876 , title i , subch . v , {reference} stat . 1172 . 22 18
9 inter - american convention 4 9

10 the secretary of homeland security with respect to the coast guard when it is not operating as a service in the navy 22 24
11 individuals , the highest median family income of the applicable state for a family 14 13
12 to the committee on banking , housing , and urban affairs of the senate and the committee on financial services of the house

of representatives
25 37

13 officer or employee of the department of commerce or bureau or agency thereof 13 11
14 infrastructure of the house of representatives and the committee on commerce , science , and transportation of the senate 19 16
15 committee on commerce , science , and transportation of the senate and the committee on science , space , and technology

of the house of representatives
26 20

16 as he may deem necessary and proper for the management and care of the park and for the protection of the property
therein , especially for the preservation

28 14

17 of a performance or display of a work embodied in a primary transmission 13 16
18 does not exceed {money} , he shall be fined under this title or imprisoned not more than one year 19 17
19 to the committee on finance of the senate and the committee on ways and means of the house of representatives 20 32
20 . there are authorized to be appropriated to carry out this section such sums as may be necessary for {date} and each of

the five succeeding fiscal years
28 26

21 that authorized in accordance with the provisions of title 18 or {money} if the defendant is an individual or {money} if
the defendant is other than an individual , or both

31 20

22 provided for in {reference} , there are authorized to be appropriated , without fiscal year limitation , {money} for payment
by the secretary of the treasury

26 20

23 in effect on the day before the date of enactment of the map – 21 15 12
24 committee on the district of columbia of the house 9 7
25 eligible for the special programs and services provided by the united states to indians because of their status 18 12
26 an amount equal to — {enum} such dollar amount , multiplied by {enum} the cost - of - living adjustment determined

under {reference} for the calendar year in which the taxable year begins
33 26

27 distilled spirits , wine , or malt beverages 8 23
28 by the director of the administrative office of the united states courts 12 23
29 {money} for {date} , {money} for {date} , {money} for {date} , {money} for {date} , {money} for {date} , and {money}

for {date}
24 15

30 on or after the effective date of the black lung benefits amendments of 13 9
31 appointed by the president , by and with the advice and consent of the senate 15 15
32 state , the commonwealth of puerto rico , the district of columbia , guam , or the virgin islands 19 15
33 submit to the committee on environment and public works of the senate and the committee on transportation and infrastructure

of the house of representatives
24 32

34 to the committee on the judiciary of the senate and the committee on the judiciary of the house of representatives 20 26
35 to the united states court of appeals for the federal circuit 11 8
36 records . — the corporation shall keep — {enum} correct and complete records of account ; {enum} minutes of the

proceedings of its members , board of directors , and committees having any of the authority of its board of directors ; and
{enum} at its principal office , a record of the names and addresses of its members entitled

60 42

37 may be provided under this section for travel that begins after the travel authorities transition expiration date . {enum} 19 15
38 to the committee on veterans ’ affairs of the senate and the committee on veterans ’ affairs of the house 20 14
39 for the {period} immediately preceding the date on which the 10 7
40 in the case of a project to be carried out in a county for which 15 18
41 definition . — in this section , the term {term} 10 16
42 . for the purpose of carrying out this section , there are authorized to be appropriated such sums as may be necessary for

each of the {date}
27 20

43 of a project described in {reference} shall not exceed {percentage} of the total cost . the secretary shall not provide funds
for the operation

24 16

44 the archivist considers it to be in the public interest 10 9
45 consistent with the purposes of this chapter and the goals of the final system plan 15 11
46 gross tons as measured under {reference} , or an alternate tonnage measured under {reference} as prescribed by the

secretary under {reference}
21 59

47 of enactment of the satellite television extension and localism act of 2010 12 9
48 of the u . s . - fsm compact and the u . s . - rmi compact 18 20
49 to the committee on commerce , science , and transportation of the senate and the committee on transportation and

infrastructure of the house of representatives
25 18

50 disclosed in any trial , hearing , or other proceeding in or before any court , 16 10
51 to the committee on commerce , science , and transportation of the senate and the committee on science 18 11
52 in the case of an authorized committee of a candidate for federal office 13 9
54 the secretary , under such terms and conditions as the secretary 11 8



uses no information-theoretic criterion to include patterns in
its model, and it highlights that DUPEX is better-suited to solve
the duplicated phrase detection problem in the legal domain.

VI. DISCUSSION

DUPEX has a solid information-theoretic foundation and
is fast on real-world data, making it both theoretically and
practically appealing. Our algorithm is easy to understand and
yields interpretable results, often discovering long sequences
that correspond to semantic phrases. We observe that DUPEX
tends to construct long patterns first, a testament to the quality
of our ranking heuristic (the product of pattern length and
occurrence frequency) that allows us to treat DUPEX much like
an anytime algorithm. Moreover, our approach is independent
of the sequence vocabulary, i.e., it works on any potentially
redundant sequence, regardless of domain-specific vocabulary.
This is particularly valuable given that many modern natural
language processing approaches based on machine learning
prefer texts with general vocabularies.

We run DUPEX on the Titles of the 2019 United States
Code, and exploring its operation on other legal documents
or different versions of the United States Code is a natural
next step. However, many legal documents are hierarchically
structured, e.g., the United States Code is structured not only
into Titles but also, inter alia, into Chapters and Sections.
Therefore, it would be interesting to compare the results of
running DUPEX on lower levels of the document hierarchy
with the results presented here, or to preprocess texts on higher
levels of that hierarchy using the results of DUPEX runs on
lower levels. Furthermore, as some of our duplicated phrases
are named entities or highlight preprocessing errors, we could
leverage the outputs of DUPEX to improve the preprocessing
of our input texts. We also observe that some of the patterns we
identify include sentence boundaries, an artifact that could best
be removed by replacing full stops with unique tokens (e.g.,
hashes). Here, our work could directly benefit from advances
in sentence splitting for legal texts, a task which, despite
growing research efforts [19], remains largely unsolved.

Through gentle postprocessing of our result set, we identify
instances of duplicated phrases with very small edit distances
between them, thus uncovering potential interpretability and
maintainability problems in the United States Code. However,
although simple postprocessing steps reveal groups of similar
patterns, and our replacement of named entities by placehold-
ers helps us discover parametrized patterns, DUPEX currently
cannot mine inexact duplicates directly. Hence, extending
our algorithm in this direction without sacrificing theoretical
soundness, possibly drawing inspiration from the rich pattern
language for event sequence mining used by SQUISH [2],
constitutes an interesting opportunity for future work.

VII. CONCLUSION

We introduce the duplicated phrase detection problem for
legal texts and propose the DUPEX algorithm to solve it.
Leveraging the Minimum Description Length principle from
information theory, DUPEX identifies a set of duplicated

phrases, called patterns, that together best compress the given
input text. As demonstrated in our experiments on the United
States Code, DUPEX identifies duplicated phrases that capture
many redundancies in our input texts, including duplicated
phrases that are parametrized by named entities (capturing
textual redundancy at a higher level of abstraction), and groups
of duplicated phrases with low edit distance between them
(potentially pointing to terminological inconsistencies). Our al-
gorithm yields actionable recommendations for improving the
readability and maintainability of legal documents and, given
its simplicity, could be easily integrated into legal workflows.
Thus, DUPEX highlights the potential of information-theoretic
approaches to data mining in the legal domain.

REFERENCES

[1] Charu C Aggarwal and Jiawei Han. Frequent Pattern
Mining. Springer, 2014.

[2] Apratim Bhattacharyya and Jilles Vreeken. “Efficiently
summarising event sequences with rich interleaving pat-
terns”. In: Proceedings of the 2017 SIAM International
Conference on Data Mining. SIAM. 2017, pp. 795–803.

[3] Andrei Z Broder. “On the resemblance and containment
of documents”. In: Proc. Compression and Complexity
of SEQUENCES 1997. IEEE. 1997, pp. 21–29.

[4] Corinna Coupette et al. “Measuring Law Over Time:
A network analytical framework with an application
to statutes and regulations in the United States and
Germany”. In: Frontiers in Physics 9 (2021), p. 269.

[5] Martin Fowler. Refactoring: improving the design of
existing code. Addison-Wesley Professional, 2018.

[6] Jens Frankenreiter and Michael A Livermore. “Compu-
tational methods in legal analysis”. In: Annual Review
of Law and Social Science 16 (2020), pp. 39–57.

[7] Roland Friedrich. “Complexity and Entropy in Legal
Language”. In: Frontiers in Physics 9 (2021), p. 279.

[8] Peter Grünwald. The Minimum Description Length
Principle. MIT Press, 2007.

[9] Daniel Martin Katz, Corinna Coupette, Janis Beckedorf,
and Dirk Hartung. “Complex Societies and the Growth
of the Law”. In: Scientific Reports 10 (2020), p. 18737.

[10] Katherine Lee et al. “Deduplicating Training
Data Makes Language Models Better”. In: CoRR
abs/2107.06499 (2021). arXiv: 2107.06499.
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in Section III-C). Title 1 and Title 9 contain no patterns meeting the length threshold.
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