
Mining Easily Understandable Models from Complex Event Logs

Boris Wiegand�
 Dietrich Klakow
 Jilles Vreeken�

Abstract
We consider the problem of discovering accurate, yet easily under-
standable graph-based models from complex event sequence data.
Real-world event data, such as production logs, exhibit complex
behaviors. These include sequences, choices, loops, optionals, and
combinations thereof that make it hard to gain insight into what is
going on, and how we can improve the process. Current approaches
do not solve this problem satisfyingly, as their modeling language
is too restricted to capture complex behavior or they return models
that are still too difficult to understand.

We formalize the problem in terms of the Minimum Descrip-
tion Length (MDL) principle, by which we say that the best model
provides the shortest lossless description of the data. The resulting
problem is NP-hard, and hence we propose the greedy PROSEQO
algorithm to discover good models from data. PROSEQO iteratively
simplifies the current description by removing nodes, edges, and
applying patterns, until MDL tells us to stop. For whenever this re-
sult is still too complex, we propose PROSIMPLE, which iteratively
removes further edges until we satisfy a user-specified threshold.

Through an extensive set of experiments, we show both meth-
ods perform very well in practice. They return simple models that
reconstruct the ground truth well, need only little data to do so, are
robust against noise, and scale well. A case study shows that, unlike
the state of the art, we discover easily understandable models that
capture the key aspects of the data generation process.

1 Introduction
Suppose we are given a database of event sequences. How
can we discover high quality yet easily understandable mod-
els of the data generating process? As an example, consider
the production log of an industrial plant, in which sequences
correspond to manufactured products and events to steps in
their production. While every self-respecting plant of course
has some model of their process, these are idealized and do
not necessarily match reality in which human decisions, ma-
chine breakdowns, bottlenecks, etc. all have their effects.
Having a high-quality model of what is actually going on
hence does not only allow valuable insight, the chance to op-
timize, but also answering what-if questions.

Real-world event data exhibits complex behaviors, such
as sequences, branches, loops, optionals, and combinations
thereof, and hence gaining insight from such data is eas-
ier said than done. Simply looking at the data does not
bring us far. As an example, consider the left-hand side of

�SHS - Stahl-Holding-Saar GmbH & Co. KGaA, Dillingen, Germany.
boris.wiegand@stahl-holding-saar.de

Saarland University, Saarbrücken, Germany.
dietrich.klakow@lsv.uni-saarland.de

�CISPA Helmholtz Center for Information Security, Germany.
jv@cispa.de

(A1R3|ECNU|N1O1|N1O2|PUH1|PUH2|PUQ2)+

VWF3

[FRVO,FRAN]

(BBH0|BCV2|BLH0|DBS1|DBS2|ECMU|SKK4|USMU|WRO2)+

LTS1

(BFH2|BNH2|BQH0|MAH2|PFH2)+

KAPU

(BFH5|[BBH5,BQH5?,BSH5]+)

(EKWV|FREK|KBMA|PPKO|USEP|USMP|USSU|USWA)+

(KBRV|MATO)?

FRFG KFRA [STRF,KONS]+

[VERL,LIEF,END]

(KRWP|KRWR)

AJH1

(NBNS|PPSB) [PPDM,BNH0]

AJH2

ENDK NBNM

AJV2

EKW1

TNV2

ANR3?

BCH5? BEF4

SIF4

STRK

BNH5

[(NBPO|USRA),USKA]

BUEI

EFF4?[(KUBE|PUFL|WSEI|[PP3O,PP3U]),IBET,EZIB,SIUS?,USAP,SCSS]

[FAE2,OFH2,[STH2,EZH2]+,(BQH2|USH2)]

DIKB

WAEI

[OFH1,[EZH1,STH1]+,USH1]

EKAB

[USDQ,HPH2]

TFV2

[AJH4,HPH4?]

EMA4

EMA5

KRM3

[RKFE,EMA3]

NBSW

[BBH2,BSH2?]

[BPH0?,STRP]

RIKO

STRQ[(HPRW|SIK3),AJH0,(SI18|[NBST,PPST])?]

[BEDF,(BLH2|ECMO|F4CO|IDF4|KER2|PUO0|Q1O2|[(Q1R1|QNR1|VOR1),RQRM]),A1R2,KRM4,SIH8]

[NBKP,QTS1]

NBEB

NNO2

STRI

[SI19,KRM1,SIK1?]

PBH2

PCH2?

PPMO

PUO1PUH0?

QTS2

[MAH4,(ANR2|BFV2|EMA2|KEF1|MAH5|WRR2)+,AJH5]

[A1F1?,BFH4]

[RIKP,AJH8,HPH8,TCV2?]

[START,([BRWA,STOE,STOZ]|[HWOE,HWOZ]),WLVG,WLFG,EACC?,(WNEK|WRIC),(DLFG|HSAN|ZANG)+]

Figure 1: Example on real data. Left, the directly-follows-
graph, and right, the result of PROSIMPLE, for the Rolling
Mill production log of steel producer Dillinger.

Fig. 1, where we plot the production log of steel manufac-
turer Dillinger as a directly-follows-graph – in which nodes
correspond to events, and directed edges from a to b repre-
sent that somewhere in the log event b happened right after
event a. While it shows some structure, the graph is heav-
ily cluttered: our domain experts could barely make out the
bigger picture, let alone gain any non-trivial understanding.

Trying to make sense of event data is a classic problem,
and is studied by both the pattern mining and process discov-
ery communities. Existing solutions, however, do not quite
solve the problem. While pattern mining methods [4, 9, 25]
are very good for discovering and summarizing non-trivial
behavior, these only return loose collections of local struc-
tures, rather than a global model for the data. Process dis-
covery [12, 2] on the other hand produces global models, but
these tend to look similarly complex and hard-to-understand
as the directly-follows-graph in Fig. 1.

In this paper we combine the best of both worlds.
We propose to discover easily understandable models from
complex event logs in the form of pattern graphs. Simply
put, these are directed graphs with patterns as nodes, that
together form a global model for the data.

We formulate the problem in terms of the Minimum De-
scription Length (MDL) principle, by which we identify the
best pattern graph as the one that provides the shortest de-
scription of the data. As the resulting optimization problem
is NP-hard, we propose the greedy PROSEQO algorithm to
discover good models from data. Starting from the directly-
follows-graph, we iteratively remove nodes and edges, as
well as replace them with patterns, until MDL tells us to

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

stop. For whenever this result is still too complex, i.e. has
too many edges, we additionally propose PROSIMPLE, which
additionally removes those edges that minimally harm our
score until we satisfy a user-specified threshold.

We validate our methods through an extensive set of ex-
periments. We show they reconstruct the ground truth well
with little data needed, are robust against various types of
noise, and scale well. On real data and through a case study
we confirm that, unlike the state of the art, we discover mod-
els that are easily understandable and fit the data well. As
an example, we show the model that PROSIMPLE discovers
on the steel production data as Fig. 1. The model is unclut-
tered, easy to understand, and our domain experts confirmed
it matches the production process well, while providing them
novel insight regarding anomalies.

The main contributions of this paper are as follows. We
(a) propose to discover pattern graphs,
(b) formalize the problem in terms of MDL,
(c) give the PROSEQO and PROSIMPLE algorithms to resp.

discover good and simple models from data,
(d) evaluate via a large set of experiments,
(e) and make all code and data available.

The remainder of the paper is structured as usual.

2 Preliminaries
Before we formalize the problem, we introduce notation and
preliminary concepts that we will use throughout the paper.

2.1 Notation We consider databases of event sequences.
Such a database D consists of n � |D| sequences. A
sequence S P D consists of m � |S| events drawn from
a finite length alphabet Ω � ta, b, . . .u. We write Sris to
refer to the ith event in S. We denote the empty string as ε.

We will model using directed graphsG � pV,Eq, where
each node corresponds to a pattern. The simplest patterns
are singletons X P Ω. Based on this base case, patterns are
recursively defined as sequences of patterns. For example,
ras expresses that event a happens, whereas ra, bs models
that event a happens before event b. Patterns can be optional,
denoted by a question mark. For example, ra, b?s models
that b may, but does not necessarily have to happen after
a. We also allow for choices within a pattern, and denote
these by parentheses and vertical bars. With ra, pb|cqs, for
example, we model that b or c happens after an a. To model
repetitions, we allow for loops, which we denote with a plus
symbol. For example, ra, pb|cqs� specifies that the pattern
of a followed by either b or c repeats itself.

All logarithms are to base 2, and we use 0 log 0 � 0.

2.2 MDL The Minimum Description Length principle
(MDL) [19, 10] is a practical version of Kolmogorov Com-
plexity [13]. Both embrace the slogan Induction by Com-
pression. We use the MDL principle for model selection.

By MDL, the best model is the model that gives the
best lossless compression. More specifically, given a set of
models M, the best modelM P M is the one that minimizes
LpMq + LpD | Mq, in which LpMq is the length in bits
of the description of M , and LpD | Mq is the length of
the data when encoded with model M . Simply put, we are
interested in that model that best compresses the data without
loss. MDL as described above is known as two-part MDL,
or crude MDL; as opposed to refined MDL. In refined MDL
model and data are encoded together [10]. We use two-part
MDL because we are specifically interested in the model:
that pattern graph that best describes the data. In MDL we
are only concerned with code lengths, not actual code words.

Next, we formalize our problem in terms of MDL.

3 MDL for Pattern Graphs
As models we consider pattern graphs. A pattern graph is
a directed and possibly cyclic graph G � pV,Eq where the
nodes correspond to patterns. In addition, a valid pattern
graph has two special nodes, the empty string ε and an
end-of-sequence character ê that resp. serve as source vs
and sink ve. As we are specifically interested in easily
understandable models M , we require that every singleton
event e P Ω appears in at most one node v P V .

We can then describe any given event sequence S P Ωm

with a pattern graph G, simply by traversing G from vs
to ve, and emitting events according to the nodes that we
visit. To determine what path to take, which choices to
make, etc, we have to read codes from the code stream C
that corresponds to how the model explains, or covers the
sequence. Conceptually, we can split C into two parts:
the model stream, Cm, which encodes how to traverse the
model, and the disambiguation stream, Cd, which encodes
the necessary details to decode the sequence.

We both give an example sequence S as well as the
covers of it of three different models M1,M2,M3 in Fig. 2.

The first model, M1, consists of a graph over just
singletons. To decode the data, we start at source node vs and
read the first code fromCm. This is a � code, which means
we should emit the current symbol of the current pattern,
i.e. ε, and move on. As vs has only one outgoing edge we
unambiguously arrive at node a. We read the next code from
Cm, which tells us to emit a, and move onward. This time
there are two edges we can follow: we either go to node b
or to node c. To determine which path to take, we read the
next code from the disambiguation stream, Cd. As we read
the code corresponding to the path to b, we take this path and
carry on in similar fashion, until we arrive at the sink ve and
have decoded S without loss.

In the second example, we start again at vs, emit ε after
reading � , and arrive at a sequence pattern. We emit its
first element (a) after reading the next � , and arrive at its
second element (b|c). To decide whether to emit b, or c, we

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Sequence S: a b e d d g

Cover 1: using a singleton-only graph

Cm: � � � � � � � �

Cd: b e d d g

M1:

avs
b

c

d

e
f g ve

Cover 2: using complex patterns

Cm: � � � � � � � �

Cd: b e d+ ö � �

M2:

ra, pb|cqsvs

d+

e

f? g ve

Cover 3: using a single pattern

Cm: � � ? � � X� � � �

Cd: b e ö �

M3:

ra, pb|cq, d+, f , gsvs ve

Figure 2: Toy example. Sequence S as covered by three
different models M1,M2,M3.

read from Cd. To determine which edge to follow, we read
from Cd, and arrive at e. We emit e and follow the edge to
loop pattern d�. We have to emit the looped pattern (here,
d) as often as we read a ö fromCd, and one final time when
we read a � . As there is only one outgoing edge from d�,
we unambiguously arrive at optional pattern f?. To decide
whether or not to emit f , we read a � or � from Cd. We
then unambiguously arrive at g, which we emit, and are done.

In the third example, the pattern graph consists of a
single large pattern. We decode the a and b just like above,
but then encounter a ? code in Cm. This code tells us that
the next event is not captured by the model. We decode this
event by reading the code for a singleton event e P Ω from
Cp, which happens to be the code for e, which we then emit.
Next, after decoding the two d’s via the loop, we encounter
a X� code in Cm which means that we should move to the
next element but not emit. The final � takes care of g, and
we have again losslessly decoded S.

3.1 Defining the Score The above examples illustrate how
we can model event sequences S using a pattern graph M ,
and, importantly, in what contexts to expect what codes.
We will now formalize these intuitions into a lossless MDL
score, such that we can identify the best model M� P M for
given data D. We start by defining LpD | Mq, the encoded
cost of a given sequence database D for a given model M .

Encoded Length of the Database At a high level, the
encoded length of the data given a model is

LpD |Mq � LNpnq � LpCmq � LpCdq ,

where we first encode the number n of the sequences in D
using the MDL-optimal encoding for integers z ¥ 1 [20],
and then proceed to encode the code streams Cm and Cd.
LN is defined as LNpzq � log� z � log c0, where log� z �
log z�log log z�. . . and we sum only the positive terms, and
c0 � 2.865064 is set such that we satisfy the Kraft-inequality
– i.e. ensure it is a lossless code.

According to Shannon Entropy, the length in bits of the
optimal prefix-free code for an event x is � logP pxq, which
follows the intuition that the more frequent an event the
shorter its code should be. However, this requires knowledge
of the distribution of events beforehand.

To avoid any arbitrary choices in the model encoding,
we use prequential codes [10] to encode the model and dis-
ambiguation streams. Prequential codes are asymptotically
optimal without having to know the distribution of messages.
The idea is remarkably simple. Starting with a uniform dis-
tribution, we update the counts after every received message,
which means we have a valid probability distribution at every
point in time, which permits optimal prefix codes [5].

To make maximum use of the available information, we
should use codes that are conditioned both on where in the
model and where in the data we are. For the model stream
Cm, which is a sequence over Ωm � t�, X�, ?u, we have

LpCmq � �

|Cm|¸
i�1

log
usg ipCmris | Srjsq � ε°

usg ip � | Srjsq � ε
,

where we encode whether we have to emit, skip, or fill a gap,
conditioned on what event Srjs P Ω we encoded right before
message Cmris. Initializing with standard choice ε � 0.5,
and usg0p�|�q � 0, we increment the usage counts upon
receiving messages.

We encode the disambiguation stream Cd analogously.
For the definition of its encoded length it is helpful to
consider it as three independent parts, namely stream Cp

of pattern codes that we expect after reading a X� or � ,
stream Cg of codes we expect after reading a ? , and stream
Cs of codes that we need to disambiguate loops, optionals,
and choices. That is, LpCdq � LpCpq � LpCgq � LpCsq.

The messages in Cp correspond to nodes in the model,
and which nodes v P G are possible depends on that node vk
we are currently at. That is, we have

LpCpq � �

|Cp|¸
i�1

log
usg ipCpris | vkq � ε°

usg ip � | vkq � ε
.

The messages in Cg correspond to singletons e P Ω, but only
those that we cannot directly reach from current node vk –
we are after minimal descriptions, after all. We hence have

LpCgq � �

|Cg |¸
i�1

log
usg ipCgris | vkq � ε°

usg ip � | vkq � ε
.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Finally, the messages in Cs are dependent both on the last
decoded symbol Srjs and what node vk we are at, i.e.

LpCsq � �

|Cs |̧

i�1

log
usg ipCsris | Srjs, vkq � ε°

usg ip � | Srjs, vkq � ε
.

Model Encoding Next, we define how we encode a model
M in bits. Because we make use of prequential codes in
encoding the data, encoding the model is relatively straight-
forward. Formally, we have

LpMq � LNp|Ω|q � logp|Ω| � 1q �
¸
vPV

rlogp|T |q � Lpvqs

� logp|V |2 � 1q � log

�
|V |2

|E|

,

where we first encode the size of the alphabet. This gives an
upper bound that we use to encode the number of pattern-
nodes in G (i.e. excluding vs and ve). We then encode the
type (T � tsingleton, sequence, choice, loop, optionalu)
and content of each pattern node. Finally, we encode the
graph among them by first encoding the number of edges,
and then their layout. This we do via a data-to-model
code [13], which is an index over a canonically ordered
set of all directed graphs of |V | nodes and |E| edges. The
only further details needed to specify are how to encode the
different types of nodes. Singletons are the base case, with

Lsingletonpvq � logp|Ω|q .

Optionals and loops are a wrapper for one subpattern v1, i.e.

Loptionalpvq � Llooppvq � logp|T |q � Lpv1q ,

whereas sequences and choices consist of up to |Ω| subpat-
terns, i.e.

Lsequencepvq � Lchoice � logp|Ω|q �
¸
v1Pv

rlogp|T |q � Lpv1qs ,

by which we have a lossless encoding of a model M .

3.2 Formal Problem Formulation With the above defini-
tions, we can now formally define the problem at hand.

Minimal Pattern Graph Problem Let D be a sequence
database over alphabet Ω, find the minimal pattern graph
M P M and cover C of D, such that the total encoded cost
LpMq � LpD |Mq is minimal.

The minimal pattern graph problem is a rather difficult
problem. For a given database Ω there exist exponentially
many models M , and the score does not exhibit trivial
structure, such as submodularity or monotonicity, that we
can exploit for efficient search. Moreover, for a given
model there exist exponentially many covers, and finding
the optimal cover is equivalent to aligning Petri nets and
sequences which has known to be NP-hard [6].

Hence, we resort to heuristics.

Algorithm 1: COVER

input : sequence S, model M , cover C
output: cover C

1 v Ð vs;
2 foreach event e P S do
3 if pattern v can cover e then
4 add codes to C to encode e with v;

5 else if pattern u PM that can cover s and there
exists a path P from v to u then

6 add codes to C to skip remainder of v;
7 add codes to C to skip all p P P up to u;
8 add codes to C to encode e with u;
9 v Ð u;

10 else
11 add codes to C to encode e as ? ;

12 return C

4 Algorithm
To find good solutions to the Minimal Pattern Graph Problem
in practice, we split the problem into two, and propose
greedy algorithms to resp. discover a good cover of the
data for a given model, and for iteratively discovering good
models from data. We discuss these algorithms in turn.

4.1 Computation of a Good Cover To compute LpD |
Mq we need a good cover C. As computing the optimal
cover is NP-hard, we take a greedy approach. The intuition
is that we want to follow the model as much as we can, and
hence want to maximize the number of � codes in Cm. To
do so, we iteratively cover the events in S with patterns in
the model, by which we ensure a linear runtime w.r.t. to |S|.

We give the pseudo-code as Algorithm 1. In a nutshell,
whenever there exists a pattern u P M that can cover the
next event e P S, we see if there exists a path from the last-
used pattern v to u, such that we minimize the number of X�
codes in Cm. Whenever there exists no such a pattern, or no
such path, we cannot use a pattern to cover e, and instead
encode it with a ? in Cm and a code for e in Cd.

Since every edge has equal cost, the shortest path prob-
lem reduces to a breadth-first-search with runtime complex-
ityOp|V |�|E|q. The maximal number of nodes in the graph
is bounded by |Ω|. Therefore, covering all sequences in D
has runtime complexity Opn � m � p|Ω| � |E|qq. The cover
encoding using prequential codes is order-invariant, hence,
the cover algorithm is also sequence-order-invariant.

4.2 Discovering Good Models with PROSEQO To dis-
cover good models we propose the PROSEQO algorithm,
which greedily improves the current model top-down until
convergence. We give the pseudo-code as Algorithm 2.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 2: PROSEQO

input : sequence database D
output: model M for D

1 M Ð initialize with trivial model for D;
2 AÐ create transformations based on M ;
3 while A is not empty do
4 tÐ pop first element of A;
5 if LpD, tpMqq LpD,Mq then
6 M Ð tpMq;
7 AÐ update A based on M ;

8 return M ;

We start from the directly-follows-graph (line 1), an
overfit pattern graph where all singleton events are nodes,
i.e. V � Ω, and we have edges pv, uq P E whenever in any
sequences in D, u happens right after v. We then generate
candidate transformations of the current model (described
below), and store these in a priority queue (ln. 2). We
evaluate the candidates in descending order of gain (ln. 4–5),
and update model and candidate transformations whenever
we manage to improve over the current model (ln. 6–7).

As model transformations we consider the following
three types. We consider removing edges, and regard every
edge pv, uq P E whose removal does not cut the path from vs
to ve as a candidate. We consider removing nodes, and con-
sider every node v PM whose removal does not cut the path
from vs to ve as a candidate. Finally, we consider growing
patterns, by which we replace current patterns v P M with
a new pattern v1. Every edge pa, bq P E generates a can-
didate sequence ra, bs. Nodes with the same predecessor v
generate choice candidates, loop candidates are created from
loops in the pattern graph, and optional patterns are from
nodes whose predecessors are also connected to ancestors.

The main bottleneck is the computation of the cover
both during evaluation and to rank candidates. To gain ef-
ficiency, we do not re-generate the entire candidate set A in
every iteration, but rather update it: we remove those trans-
formations from A that are no longer possible, and only add
and compute the gains for new candidates – i.e. we do not
re-compute gains of previously generated transformations.

The number of generated candidates increases with the
number of edges in the pattern graph. A maximally dense
graph with |E| � |Ω|2 generates |E| edges, |E| sequences,�
|Ω|
2

�
choices, |Ω| optionals and |Ω| (self-)loops. In the worst

case, each generated transformation improves the score and
leads to Op|Ω|q new candidates, which makes Opp|Ω| �
|E|q � |Ω|q candidates in total. Considering the repetitive
cover computation, PROSEQO has a runtime complexity of
O
�
n �m � p|Ω| � |E|q2 � |Ω|

�
.

Algorithm 3: PROSIMPLE

input : sequence database D, degree ratio r
output: model M for D with degree ratio ¤ r

1 M Ð PROSEQOpDq ;
2 while |E|

|V | ¡ r do
3 e� Ð arg minePE LpD,M a eq;
4 M ÐM a e�;

5 M Ð PROSEQOpD,Mq ;
6 return M ;

4.3 Discovering Simple Models with PROSIMPLE What
if the MDL-optimal model, or its approximation by PROS-
EQO, is still too complex for a human? How can we discover
models that are easily understandable, while ensuring they
do explain the data as well as possible?

The main complexity of a process model, as confirmed
by our domain experts, comes from its number of edges:
it is hard to keep track of all possible paths in a directed
graph with many edges. This suggests that we can ensure
understandability by controlling the number of edges in a
model. How can we do so in a principled manner? Let
Mprq � M be the set of all models over Ω that have a degree
ratio |E|{|V | of at most r. It is trivial to re-write the Minimal
Pattern Graph problem accordingly: we are now after that
model M� P Mprq that minimizes the total encoded length.

We build upon PROSEQO to find a good solution for this
new problem. We give the pseudo-code as Algorithm 3.
First, we simply run PROSEQO on D, which gives us a
M P M (line 1). If M satisfies the degree ratio threshold r,
we are done. If it does not, we iteratively remove those edges
from the model that ‘harm’ the MDL score least, until we
satisfy threshold r (ln. 2–5). After removing one, or multiple
edges it is possible that PROSEQO can further optimize the
MDL score – for example by applying patterns or removing
nodes. While ideally we would do this in every iteration, for
efficiency we do this only once, after we ensured M P Mprq

(line 5). We refer to this method as PROSIMPLE.
The edge removal part of PROSIMPLE has runtime com-

plexity Op|E|2 �n �m � p|Ω| � |E|qq, because we can remove
up to |E| edges, and for each iteration we have to compute
the cover to get the score for |E| different models.

5 Related Work
Discovering structure from event sequences is a classic re-
search topic [1, 14]. Earlier proposals focused on effi-
cient discovery of all frequent subsequences with or without
gaps [28, 16], resulting in overly many and highly redun-
dant patterns: the pattern explosion. Attention hence shifted
to reducing redundancy via closures [23, 22], statistical test-
ing [21, 17], or a pattern set mining approach [24, 8].

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Subsequences and serial episodes can model interesting
behavior, but only have limited expressive power. There exist
proposals that can additionally model parallel behavior [23],
choices [4], or periodicity [9], but each only extends in one
direction. Petri nets [18] can jointly model loopy, alternative
as well as concurrent behavior, but existing approaches [25]
rely on frequency-based interestingness measures and hence
suffer from the pattern explosion.

While pattern mining is great for discovering interest-
ing local behavior, the above methods only result in a set of
disconnected patterns, rather than a coherent model that ex-
plains the generating process in terms of patterns. Towards
this goal, the closest related field is process discovery, which
is a subfield of process mining [26], and deals with the ex-
traction of process models from event logs. The mainstream
of process discovery algorithms infers model structure from
the directly-follows-graph of the log [27, 12, 2]. The appli-
cation of these state-of-the-art approaches on complex real-
world event logs leads, however, either to highly complex
models that are difficult to understand or models that over-
generalize and obtain only low precision [2, 26].

In contrast to the above, with PROSEQO we discover
compact, non-redundant, and coherent models that explain
the process behind the data in terms of rich patterns. We
do not only consider removing edges (i.e. directly-follows-
relations) but also nodes (symbols) to reduce model com-
plexity. Moreover, if desired by the user, we provide an eas-
ily interpretable hyperparameter that allows to further reduce
model complexity in a principled way.

6 Experiments
In this section, we empirically evaluate PROSEQO and
PROSIMPLE on synthetic and real-world data. We imple-
mented both methods in Python. For reproducibility, we
make both code and synthetic data generators available for
research purposes.1 All experiments were executed single-
threaded on an Intel i7-6700 CPU, with 16 GB of memory,
running Windows 10. We report wall-clock running times.

We compare to three state of the art methods. SPLIT-
MINER [2] and IMF [12] are process discovery algorithms,
whereas SQUISH [4] discovers models that consist of se-
quential patterns. PROSEQO and SQUISH have no hyper-
parameters. We run IMF and SPLITMINER with the parame-
ters set as recommended by the authors [12, 2].

6.1 Synthetic Data First, we consider synthetic data,
where we both know and can control the ground truth. We
start with a sanity check, in which we evaluate on data with-
out structure. To this end, we sample 100 sequences of
length ten uniformly at random from Ω � ta0, . . . , a9u
and add fixed start and end symbols. PROSEQO is the

1https://eda.mmci.uni-saarland.de/proseqo/

none remove
0.05

addex
0.05

addnew
0.05

swap
0.05

mixed
0.03

0.0

0.2

0.4

0.6

0.8

1.0

Noise Scenario

F1
-s

co
re

PROSEQO SPLITMINER IMF SQUISH DFG

Figure 3: [PROSEQO can handle noise] F1-scores on
directly-follows-relations for resp. no, 5% remove, 5% ad-
dex, 5% addnew, 5% swap, and 3% of all noise types simul-
taneously, for PROSEQO, SPLITMINER, IMF, SQUISH, and
the trivial (DFG) graph that PROSEQO departs from.

only method recovering the ground truth, returning the
model rSTART, pa0|a1|a2|a3|a4|a5|a6|a7|a8|a9q�,ENDs.
SQUISH almost recovers the ground truth by returning the
singleton-only model, however it also outputs the sequential
pattern rSTART, a1s. While IMF correctly identifies that all
10 activities can happen in arbitrary order, it explicitly does
not allow any activity to happen more than once, which con-
tradicts the data generation process. SPLITMINER overfits
the data and returns a model with 11 nodes and 18 edges.

Next, we examine how well PROSEQO can reconstruct a
non-trivial model with different types and levels of noise. We
generate ground truth models using the generator proposed
by Jouck et al. [11] with the following parameters: min �
40, mode � 50, max � 60, sequence � 0.5, choice � 0.4
and loop � 0.1. We convert the resulting process trees into
pattern graphs and sample sequence databases using random
walks. To add noise, we apply the following noise models:
remove simulates missed recording of events, i.e. for each
event in the database we remove it with a given probability.
addex simulates recording real events that did not happen,
i.e. for every event in the database, with a given probability
we insert a random event e P Ω. addnew does the same,
but inserts a fixed noise event n R Ω. swap simulates events
recorded in wrong order, i.e. for each neighbouring pair of
events, we swap their order with a given probability.

As a metric of success, we consider the F1 score mea-
sured over correctly identified edges between events. We
consider the average result per method over 20 indepen-
dently generated models, and for each generate a database
D of 1 000 sequences each. We plot the results for all four
methods, as well as those for the trivial model that PROSEQO
starts from, in Fig. 3. We see that PROSEQO performs best:
it returns near-perfect models when there is no noise, obtains
above 0.94 scores for 5% remove, addex, or addnew noise,
and still reaches an F1 of above 0.85 when we apply all four
noise types simultaneously at 3% each. Our competitors fare

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

https://eda.mmci.uni-saarland.de/proseqo/

0.00 0.05 0.10 0.15 0.20

0

0.2

0.4

0.6

0.8

1

Probability of remove noise

F1
-s

co
re

0

0.2

0.4

0.6

0.8

1

0 500 1,000 1,500

Number of sequences (|D|)

F1
-s

co
re

PROSEQO

SPLITMINER

IMF

SQUISH

Figure 4: [PROSEQO is robust] F1-scores for varying
amounts of remove noise (left) and for varying number of
sequences with 5% remove noise (right).

less well. IMF only performs well when there is no noise,
while SQUISH and SPLITMINER tend to return underfitting
models with low recall and high precision.

Next, we investigate robustness against varying levels of
remove noise, and for varying number of samples S P D for
a fixed amount of remove noise of 5%. We again generate
20 models per setting and report the average result in Fig. 4.
We see that PROSEQO performs favorably, its F1 scores only
dropping slightly for up to 20% noise, whereas it only needs
a 100 sequences to converge. SPLITMINER is in second
place, whereas IMF and SQUISH trail by a wide margin. As
they perform sub-par, we do not consider these two methods
in the remainder of this section.

6.2 Real-World Data Next, we evaluate on four real-
world event logs. Three stem from the publically available
Business Process Intelligence Challenge. Permits contains
event data for building permit applications of a Dutch munic-
ipality. Loans corresponds to the recording of a loan applica-
tion process of a Dutch financial institute. Purchases is data
on the purchase order handling of an un-named company. As
the above experiments showed low sample complexity for all
methods, we consider a random sample of 2 000 out of its
in total 200 000 sequences. Last, but not least, we consider
the Rolling Mill production event log of the steel producer
Dillinger. We give their base statistics in Table 1.

Because we do not know the ground truth, we cannot
compute F1 scores for these datasets. Instead, we hence
report on how complex the models are, and how well they
explain (fit) the data. We measure model complexity in terms
of number of nodes, number of edges, and structuredness
S � maxt0, |Ω|�|Vs|

|Ω|�1 u, with Vs being the set of nodes
after reducing the graph with perfectly matching sequences,
choices, optionals and loops. The more such patterns a graph
contains the easier it is to understand. A perfectly structured
model can be reduced to one single node and has S � 1.

We measure fitness by converting the models to Petri
nets [18] and computing the corresponding score [3]. We

Perm
its

Loa
ns

Purc
ha

ses

Roll
ing

M
ill

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tn

es
s

PROSEQO

PROSIMPLE

SPLITMINER

Perm
its

Loa
ns

Purc
ha

ses

Roll
ing

M
ill

0.0

0.2

0.4

0.6

0.8

1.0

St
ru

ct
ur

ed
ne

ss

Figure 5: [PROSIMPLE mines well-fitting yet understand-
able models] Fitness (left, higher is better) and structured-
ness (right, higher is better) for PROSEQO, PROSIMPLE with
r � 1.5 and SPLITMINER on four real-world datasets.

consider both PROSEQO and PROSIMPLE. For the latter, we
focus on simple models and set the degree ratio r to 1.5,
which means that on average every node in the model has 1.5
outgoing edges. We compare to SPLITMINER. We run each
of the methods, and give the results in Fig. 5 and Table 1.

We first consider Fig. 5 and see that PROSEQO provides
models that fit the data best, SPLITMINER discovers well-
fitting but complicated models, and that at cost of some
fit, PROSIMPLE returns by far the simplest models. If we
investigate the quantitative results in Table 1, we again see
that PROSIMPLE creates by far the simplest models. The loss
of fit is revealed by the relative compression L%. A much
simpler model cannot explain all the behavior in the data and
thusLpD |Mq increases a lot. Even though the fit of the data
might look bad for PROSIMPLE, it is an approximation of the
best fit of a model with degree ratio r � 1.5. We perform a
parameter-sensitivity analysis in the supplementary.2

The importance of model simplicity becomes even more
clear when we visually inspect the models. In Fig. 6 we show
the models discovered by PROSIMPLE and SPLITMINER for
the Rolling Mill data. While the latter is already much more
structured than the trivial directly-follows graph, it is still a
bowl of spaghetti that was not interpretable for our experts;
they complained it was too hard to follow the control-flow.
The result of PROSIMPLE is much easier to understand:
our experts confirm that the model as a whole, as well as
the patterns therein are semantically meaningful. That is,
the model gives a high-level overview of the production
process, and the pattern nodes give detailed insight into what
production steps are executed in what order and context.
Now, we will have a closer look on the rolling mill process
and how PROSIMPLE enables an understanding of it.

6.3 Case Study Using the PROSIMPLE model in Fig. 6,
we can highlight four parts of the Dillinger rolling mill that
are understandable to everyone. The process starts with so-

2https://eda.mmci.uni-saarland.de/proseqo/

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

https://eda.mmci.uni-saarland.de/proseqo/

SPLITMINER PROSEQO PROSIMPLE, r � 1.5

Data n m̂ |Ω| |V | |E| t |V | |E| L% t |V | |E| L% t

Permits 1199 46 291 683 1441 33s 181 33071 98.2 50h 42 49 129.7 51h
Loans 31509 17 26 53 71 1s 22 135 98.6 2h25m 5 5 130.4 2h28m
Purchases 2000 9 28 68 135 4s 26 163 97.4 4m 6 6 103.3 4m
Rolling Mill 1000 28 191 427 817 9s 135 934 98.3 2h12m 68 101 132.7 2h30m

Table 1: [Results on real-world data] We give the base statistics, number of sequences n � |D|, number of unique
events |Ω|, and average sequence length m̂, and results of SPLITMINER, PROSEQO, and PROSIMPLE with r � 1.5 on four
real world datasets. Given are the number of nodes (|V |) and edges p|E|q of the discovered models. For PROSEQO and
PROSIMPLE we additionally give the relative compression (L%, lower is better) and runtime.

0

131

115 8

1

2

3

5 4

10

145

147

16

108

110

150

37

100

128

105

144

91

92

93

101

66

124

14281 79 6768

102

58

45 59

60

61

103

104

41

107112

113

116

117

125

151 4253

106

109

27

154

28

29

30

31

38

11

1213

129

14 15

111

121

114

6

7

69

23

7071 72

64

65

118

119

120

20 2122

33 3548

143

153

34

122

123

130 132

152

126 73

127

50 62

17

51

97

134

9

133

88

149155

89

136

135

77

78

137138

139

55

146

56

74

98

140

141

46 57

18

99

148

19

24

25

26

32

49

36

39

40

52

43 4454

47

63

75

82 80

83

84

8586

87

76

90

96

94

95

(a) SPLITMINER

1

2

3

4

(b) PROSIMPLE

Figure 6: [PROSIMPLE mines detailed yet easily un-
derstandable models] Result of SPLITMINER (left) and
PROSIMPLE (with r � 1.5, right) on the Rolling Mill data.

called slabs, cast steel cuboids. The green source node (1)
contains a nested sequence of eight low-level activities that
correspond to the hot zone of the rolling mill. The slabs
are either heated up in so-called pusher-type furnaces or in
bogie-hearth furnaces, such that they are soft enough to get
rolled to mother plates at two rolling stands. Some plates get
special treatment and are cooled down with water. After the
hot zone, the mother plates are cut into the plates ordered by
the customers. This either is done using large scissors for
soft and thin enough (part 2) plates, or with cutting torches
if the plates are too hard and thick (part 3). The bottom part
(4) mainly consists of quality checks and corrections.

Not only does the model PROSIMPLE discovered pro-
vide a high-level overview of the control-flow of the rolling
mill process, it also contains details on low-level behavior
that allow for, among others, an anomaly analysis. First, our
domain experts questioned some of the modeled behavior as
violating their expectation. These all turned out to be due to
relatively rare but re-occurring deviations from the normal
behavior such as e.g. machine failures, as well as alternative

0

0.2

0.4

0.6

0.8

1

200 400 600 800 1000
Number of sequences (n)

Fi
tn

es
s

PROSEQO

PROSIMPLE

0

50

100

150

200

200 400 600 800 1000
Number of sequences (n)

R
un

tim
e

(s
ec

on
ds

)

Figure 7: [PROSEQO and PROSIMPLE scale favourably]
Scalability of PROSEQO and PROSIMPLE on Loans in terms
of average fitness over 10 runs with standard deviation (left)
and runtime in seconds (right) for varying subsample size.

routing due to high workload in parts of the plant. For exam-
ple, if needs be, thicker plates can run through parts of the
rolling mill specialized for thinner plates and vice versa.

In a second step, we showed sequences deviating most
from the found model to our domain experts. Here, we iden-
tified anomalies corresponding to additional and repetitive
work necessary to meet certain quality goals. Better moni-
toring of these cases can support improvement of the process
in terms of product quality and reduced production loss.

6.4 Scalability Finally, we report in Figure 7 on the per-
formance and runtime of PROSEQO and PROSIMPLE depen-
dent on the size of a subsample of the Loans data. Both meth-
ods show low sample complexity by achieving stable fitness
on the whole dataset with only 100 out of 31509 sequences,
and they scale linearly in the number of sequences.

7 Discussion
Although both methods work well, we see many interesting
directions for future work. First of all, MDL is not a
magic wand: the encoding we propose includes choices.
Different choices may lead to different, and possibly better,
models. While we consider a rich set of patterns, it is easy to
think of structure such as parallel behavior that we currently
cannot succinctly capture. On the topic of discovering better

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

models, it is likely worthwhile to incorporate bottom-up
approaches from pattern mining for identifying promising
parallel and choice behavior, rather than the pure top-down
approach we currently take. Extending pattern graphs such
that one event can be part of more than one node could
also lead to better models. On the topic of scalability, it is
worthwhile to investigate whether it is possible to formalize
accurate and easy-to-compute estimates [7], such that we can
be more informed during the search.

We see many applications of pattern graphs, including
anomaly detection, optimizing planning, and especially to-
wards simulation and answering what-if questions. To this
end, the formulation of model, problem, and inference would
ideally have to be re-done in pure counterfactual terms [15].

8 Conclusion
We studied the problem of discovering accurate yet easily
understandable models from complex event sequence data.
We proposed to model data using directed pattern graphs,
where the nodes summarize complex behaviors such as se-
quences, choices, loops, optionals, and combinations thereof
in easily interpretable terms. We formulated the problem in
terms of the Minimum Description Length (MDL) principle.
As the search space is exponentially sized, and determining
the quality of a model is already NP-hard, we proposed the
greedy PROSEQO algorithm to discover good models in prac-
tice. For whenever understandability is of primary, and accu-
racy of secondary importance, we propose the PROSIMPLE
algorithm that further prunes the result of PROSEQO up till
an easily interpretable user-specified parameter is satisfied.
Experiments on both synthetic and real-world data validate
that our approaches work well in practice, and outperform
the state of the art by a margin.

References

[1] R. Agrawal and R. Srikant. Mining sequential patterns. In
ICDE, pages 3–14. IEEE, 1995.

[2] A. Augusto, R. Conforti, M. Dumas, and M. La Rosa. Split
Miner: Discovering accurate and simple business process
models from event logs. In ICDM, pages 1–10. IEEE, 2017.

[3] A. Berti and W. van der Aalst. Reviving token-based replay:
Increasing speed while improving diagnostics. In ATAED,
pages 87–103, 2019.

[4] A. Bhattacharyya and J. Vreeken. Efficiently summarising
event sequences with rich interleaving patterns. In SDM,
pages 795–803. SIAM, 2017.

[5] T. M. Cover and J. A. Thomas. Elements of Information
Theory. Wiley-Interscience New York, 2006.

[6] M. de Leoni and W. van der Aalst. Aligning event logs and
process models for multi-perspective conformance checking:
An approach based on integer linear programming. In BPM,
pages 113–129. Springer, 2013.

[7] J. Fischer and J. Vreeken. Sets of robust rules, and how to
find them. In ECML PKDD, pages 38–54. Springer, 2019.

[8] J. Fowkes and C. Sutton. A subsequence interleaving model
for sequential pattern mining. In KDD, pages 835–844, 2016.

[9] E. Galbrun, P. Cellier, N. Tatti, A. Termier, and B. Crémilleux.
Mining periodic patterns with a MDL criterion. In ECML
PKDD, pages 535–551. Springer, 2018.

[10] P. Grünwald. The Minimum Description Length Principle.
MIT Press, 2007.

[11] T. Jouck and B. Depaire. PTandLogGenerator: A generator
for artificial event data. In BPM Demo Track, pages 23–27.
CEUR, 2016.

[12] S. Leemans, D. Fahland, and W. van der Aalst. Discovering
block-structured process models from event logs containing
infrequent behaviour. In BPM-Workshops, pages 66–78.
Springer, 2013.

[13] M. Li and P. Vitányi. An Introduction to Kolmogorov Com-
plexity and its Applications. Springer, 1993.

[14] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering
frequent episodes in sequences. In KDD, pages 210–215.
AAAI, 1995.

[15] J. Pearl. Causality: Models, Reasoning and Inference.
Cambridge University Press, 2nd edition, 2009.

[16] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. Mining sequential patterns by
pattern-growth: The prefixspan approach. IEEE TKDE,
16(11):1424–1440, 2004.

[17] F. Petitjean, T. Li, N. Tatti, and G. Webb. Skopus: Mining
top-k sequential patterns under leverage. Data Min. Knowl.
Disc., 30, 2016.

[18] C. A. Petri. Kommunikation mit Automaten. PhD thesis,
Institut für instrumentelle Mathematik Bonn, 1962.

[19] J. Rissanen. Modeling by shortest data description. Automat-
ica, 14(1):465–471, 1978.

[20] J. Rissanen. A universal prior for integers and estimation by
minimum description length. Annals Stat., 11(2):416–431,
1983.

[21] N. Tatti. Significance of episodes based on minimal windows.
In ICDM, pages 513–522, 2009.

[22] N. Tatti and B. Cule. Mining closed episodes with simultane-
ous events. In KDD, pages 1172–1180, 2011.

[23] N. Tatti and B. Cule. Mining closed strict episodes. Data
Min. Knowl. Disc., 2011.

[24] N. Tatti and J. Vreeken. The long and the short of it:
Summarizing event sequences with serial episodes. In KDD,
pages 462–470. ACM, 2012.

[25] N. Tax, N. Sidorova, W. van der Aalst, and R. Haakma. Lo-
calprocessmodeldiscovery: Bringing petri nets to the pattern
mining world. In ATPN, pages 374–384. Springer, 2018.

[26] W. van der Aalst. Process Mining – Data Science in Action.
Springer, second edition, 2016.

[27] A. Weijters and J. Ribeiro. Flexible heuristics miner (FHM).
In CIDM, pages 310–317. IEEE, 2011.

[28] M. J. Zaki. SPADE: An efficient algorithm for mining
frequent sequences. Mach. Learn., 42(1-2):31–60, 2001.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

A Appendix
Here, we include supplementary material which could not be
part of our main paper.

A.1 Parameter Sensitivity of PROSIMPLE In Fig. 8, we
show the influence of the degree ratio parameter r on the
result of PROSIMPLE. The lower r, the more edges are
removed from the output of PROSEQO. Hence, a lower value
of r leads to a more structured, easier understandable model
but a lower fit on the data. For the Rolling Mill data, r � 7.0
does not remove any edges and thus outputs a model with the
same fitness and structuredness as PROSEQO alone. A value
of r � 1.5 trades relatively little fitness for a lot of model
simplicity (structure).

1.0 2.0 3.0 4.0 5.0 6.0 7.0

0.0
0.2
0.4
0.6
0.8
1.0

r

St
ru

ct
ur

ed
ne

ss

1.0 2.0 3.0 4.0 5.0 6.0 7.0

0.0
0.2
0.4
0.6
0.8
1.0

r

Fi
tn

es
s

Figure 8: [Varying degree ratio on PROSIMPLE] Struc-
turedness (left) and Fitness (right) for PROSIMPLE with vary-
ing degree ratio r on the Rolling Mill dataset. r � 7.0 is
equivalent to PROSEQO.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Preliminaries
	Notation
	MDL

	MDL for Pattern Graphs
	Defining the Score
	Formal Problem Formulation

	Algorithm
	Computation of a Good Cover
	Discovering Good Models with Proseqo
	Discovering Simple Models with Prosimple

	Related Work
	Experiments
	Synthetic Data
	Real-World Data
	Case Study
	Scalability

	Discussion
	Conclusion
	Appendix
	Parameter Sensitivity of Prosimple

