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Abstract—We study the problem of discovering robustly con-
nected subgraphs that have simple descriptions. Our aim is,
hence, to discover vertex sets which not only a) induce a subgraph
that is difficult to fragment into disconnected components, but
also b) can be selected from the entire graph using just a simple
conjunctive query on their vertex attributes. Since many sub-
graphs do not have such a simple logical description, first mining
robust subgraphs and post-hoc discovering their description leads
to sub-optimal results. Instead, we propose to optimise over
describable subgraphs only. To do so efficiently we propose a
non-redundant iterative deepening approach, which we equip
with a linear-time tight optimistic estimator that allows pruning
large parts of the search space. Extensive empirical evaluation
shows that our method can handle large real-world graphs, and
discovers easily interpretable and meaningful subgraphs.

I. INTRODUCTION

Graphs provide a natural way to represent relationships
between entities. We find graphs, ranging from power grids,
social networks, up to relational databases, all around us. With
the ubiquity of the graph data model, mining graphs attracted
a lot of attention from the data mining community. A large
part of this attention has been focused on discovering dense
subgraphs—typically defined to have high edge-to-vertex ratio.
The main premise of this task was that these represent vertices
that ‘belong together’ and are therefore worth knowing.

In our work we break with this premise: we argue that, from
a knowledge discovery viewpoint, subgraphs whose vertices
are arbitrarily chosen to maximise o score are not only difficult
to interpret, but possibly not even interesting to begin with.
After all, by selecting vertices at will, there is no guarantee that
there exists a reasonable explanation why these nodes belong
together. Instead, we consider only subgraphs whose vertices
can be selected out of the entire graph with a conjunctive query
on their attributes. By admitting such a simple description,
these subgraphs become easily interpretable: e.g., from IMDB
data we find mainstream movie crew with lengthy experience
to have collaborated together more than usual in the industry.

Moreover, we depart from the notion that subgraphs with
high edge to vertex ratios are interesting per se. Despite its
appeal at first glance, it is a rather naive a measure of whether
vertices ‘belong together’, as it only considers numbers of
edges rather than their structure. As an example, consider
Fig. 1 where we depict two toy graphs of 20 vertices each. The
graph on the left has a high edge to vertex ratio, but is arguably
not very robustly connected; that is, we can fully disconnect

(a) complete bipartite graph
edge/vertex ratio: 3.2, coreness: 4

(b) 6-regular graph (and 6-core)
edge/vertex ratio: 3, coreness: 6

Figure 1 [Edge/vertex–ratio vs. robust connectedness]: Al-
though graph (a) is denser than (b), the latter is more robustly
connected. For example, to fully disconnect (a) we need only
remove its 4 central nodes, while (b) requires removing 19.

it by only removing the 4 central nodes. In contrast, the graph
on the right has a lower edge to vertex ratio, but is robustly
connected: to disconnect it, we would have to remove 19
vertices. That is, while the leftmost graph is not uninteresting
per se, the rightmost graph depicts an interesting phenomenon
that when focusing on edge statistics alone we would miss.

We hence study the problem of discovering robustly con-
nected subgraphs that admit simple descriptions. We propose
a score for robustness of subgraphs based on the notion of
k-coreness. We then aim to discover those subgraphs that are
not only simply describable, but are (much) more robustly
densely connected than the remainder of the graph. Unlike
the description-agnostic setup, this incurs a hard combinatorial
optimization problem for which the post-hoc approach of first
mining robust subgraphs and then searching for descriptions
fails. We therefore use subgroup discovery to efficiently mine
large attributed graphs with guarantees: we propose a tight
optimistic estimator for a branch-and-bound variant that avoids
redundancy by searching only within closed patterns. Ex-
tensive experiments on large and diverse real-world graphs
show that our method, ROSI, performs very well in practice,
discovering meaningful subgraphs while competing ones run
out of time and memory. Further, these experiments also show
that the above example is not esoteric: the densest subgraph
that the recent method LDENSE [10] discovers from DBLP
is one with high average density but a robustness of 0 (!).

For conciseness, we postpone all proofs to the appendix.1

1http://eda.mmci.uni-saarland.de/rosi/

http://eda.mmci.uni-saarland.de/rosi/
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Figure 2: The core decomposition of a graph hierarchically
groups its vertices into increasingly denser subgraphs.

II. MEASURING ROBUST CONNECTEDNESS

We study sets of entities, for which we are given at-
tribute values as well as structural information in the form
of connections between them. Formally, we consider vertex-
attributed (multi-)graphs G = (V,E,X), where the vertices V
correspond to entities and the edges E to connections between
them. The set of vertex attributes X = {x1, . . . , xp} comprises
assignments xi : V → Xi from vertices to a continuous or
categorical domain Xi. These attributes can be used to simply
describe subsets based on logical expressions of vertices v ∈ V
like σ(v) ≡ [age(v) ≥ 18] ∧ [sex(v) = ‘female’].

Our goal is to identify such logically described sets of
vertices U ⊆ V that are relatively large but also more
robustly connected than G as a whole. That is, we aim to
identify significant parts of the graph that stand out due to
their connectedness. Note that size and connectedness are
inversely related: while it is easy to construct a small U
with highly connected vertices, a large U must also include
loosely connected ones. We hence maximise their (weighted)
multiplicative trade-off, called density impact, defined as

fκ(U ; γ) = fc(U)
(1−γ)

fd(U)
γ

with γ ∈ (0, 1) , (1)

where γ is a trade-off parameter that tunes the importance
between the coverage term fc(U) = |U |/|V |, i.e., the portion
of the graph covered by the subset U , and the density term
fd(U), which increases as the vertices in U become more
robustly connected. We proceed to give a precise definition of
the density term based on the concept of k-cores [6].

We can formally measure how robustly connected an en-
tity subset U ⊆ V is by studying the connectivity of its
induced subgraph, i.e., the subgraph G[U ] = (U,E(U)),
where E(U) = {(v, u) ∈ E | u, v ∈ U} is the set of all
edges with end-points in U . For a vertex v, we denote by
N(v) = {u ∈ V | (u, v) ∈ E} its neighbours in G and its
degree, i.e., the number of its neighbours, by δ(v) = |N(v)|.
When a quantity refers to the induced graph G[U ] we indicate
the inducing vertex set as a subscript. For instance, δU (u)
denotes the degree of vertex u in the induced graph G[U ].

A k-core component of a graph G is an (inclusion-wise)
maximal connected subgraph of G whose vertices U have all
a degree of at least δU (u) ≥ k. The subgraph comprising all
k-core components of this graph is called its k-core H(k), and
the k-core vertices V(k) are the vertices of the graph’s k-core.
The last two definitions are then related as H(k) = G[V(k)].

H(5)
5-core
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Figure 3: The average subgraph coreness κ̄U may be mislead-
ingly overestimated when computed with respect to the whole
graph, as the average of its coreness κ(v) over v ∈ U .

The annotated k-cores of the example graph on Fig. 2 show
that the k-cores are nested to form a hierarchy over the
vertices. We also define the k-shell of G as the set of vertices
that lie in the k-core but not in the k+ 1-core (same-coloured
vertices in the figure). In this way, the k-shells define a
partitioning over the vertices: the core decomposition of G,
which assigns to each vertex v a core number (or coreness)

κ(v) = max {k | v ∈ V(k)} , for G, and
κU(v) = max {k | v ∈ VU(k)} , for G[U ] ,

equal to the greatest number k such that this vertex lies in the
k-core of G, where VU(k) are the k-core vertices of G[U ].
Note that by definition G[V ] = G, and hence κV (v) = κ(v).
Finally, the graph degeneracy K = maxv∈V κ(v) is the
maximum coreness over all the vertices of the graph.

Using these quantities, we define the average coreness of
G and G[U ], respectively, as the mean coreness of its vertices

κ̄ =
κV
|V | and κ̄U =

κU
|U | with κU =

∑
v∈U

κU(v) for U ⊆ V. (2)

We hence quantify the amount to which a vertex set U is more
robustly connected than G by the coreness density

fd(U) = κ̄U − κ̄ ,
which completes the definition of the density term of Eq. (1).

Note that graph coreness is related to various definitions of
density [18]: high coreness indicates better connectedness. For
instance, the minimum coreness in a graph bounds the number
of edges that have to be removed for the subgraph to become
disconnected. These traits underlie our notion of robustness.

III. DISCOVERING ROBUST DESCRIBABLE SUBGRAPHS

Our goal is to identify large and robustly connected vertex
sets which have a simple description. Hence, in addition to
the chosen optimisation function fκ we need to fix a set of
potential descriptions; this set is the description language L.

A common way to define such a language is by considering
all conjunctions π1 ∧ ... ∧ πl that can be formed from a set
of base predicates Π on vertex attributes, e.g., [age > 18]
or [sex = ♂], that are either given, or in case of ordinal or
numeric features, automatically discovered during mining [21].
We refer to such a conjunction as a selector σ and to the
vertices that satisfy it as the extension of σ, denoted ext(σ) ⊆



V . We define the value of a selector fκ(σ) = fκ(ext(σ)) to be
the objective value of its extension. With this we can formally
specify our problem as: find an element σ∗ ∈ L that solves

σ∗ ∈ arg max
σ∈L

f(σ) . (3)

Although greedy algorithms are readily available to solve this
problem, it can be shown that for particular inputs they yield a
solution arbitrarily far from the optimal. In the next section, we
develop an efficient algorithm that finds the optimal solution.

A. Solving Exactly with Branch–and–Bound

The established algorithm that solves problem (3) exactly
is Branch–and–Bound (BNB). This algorithm uses two com-
ponents: a refinement operator and an optimistic estimator.

A simple refinement operator ρ : L → 2L can be
formulated by extending a given selector with each unused
predicate that respects a given lexicographic ordering. While
simple, this operator is usually inefficient in practice, as the
description language tends to contain many selectors that
refer to the same vertex set, e.g., σ1 ≡ [pregnant] and
σ2 ≡ [pregnant] ∧ [sex = ♀]. To avoid this redundancy
one commonly uses the concept of a closure operator [20]
c(σ) =

∧ {π ∈ Π | ext(π) ⊇ ext(σ)}. We can now define

ρ(σ)=
{
ψ = c(σ ∧ πi) | icore(σ) < i ≤ |Π| ∧ ψ|i−1 = σ|i−1

}
where σ|i =

∧
{πj : πj occurs in σ and j ≤ i}

and icore(σ) = min{i | ext(σ|i) = ext(σ)} .
This operator induces a tree over L that has at its root the
selector σroot: the empty conjunction, with ext(σroot) = V .

The second component of BNB—an admissible optimistic
estimator f̂ of an objective function f—is defined as

f̂(U) ≥ max
T⊆U

f(T ), ∀U ⊆ V . (4)

Naturally, the tighter the bound of the optimistic estimator the
higher its pruning potential. This potential becomes optimal
when Eq. (4) holds with equality; then we refer to f̂ as the
tight optimistic estimator [12] of the objective function f .

These components work as follows: the refinement operator
defines such a tree over the selectors in L, in which tree each
child of a selector describes a subset of its parent’s vertex
set V . The optimistic estimator upper bounds the value of all
possible subsets of V , thus also the value of all its descendants.
We thus start from the root and traverse the selector tree, while
keeping track of the best selector value encountered so far. If
the optimistic estimator of a selector is below the current best
value, none of its descendants can improve on this value, so
we can safely prune its sub-branch.

B. Optimistic Estimators

To derive an optimistic estimator for our objective function,
we need to show that it satisfies bound (1). A first bound can
be derived by adapting ideas from rule mining (or subgroup
discovery) on numerical unstructured data [11]. Here each
entity v has a real-valued target attribute y and we aim to
find a describable subset U ⊆ V in which the mean value of

y is maximal. Using coreness as the target attribute, the formal
objective in this task becomes a static version fsκ of our fκ:

fsκ(U) =
|U |
|V |

[∑
u∈U

κ̄(u)− κ̄
]

with tight bound [7]

f̂sκ(U) = max
0<i≤|U |

i

|V |

[
1

i

i∑
j=1

κ
(
vsj
)
− κ̄
]
, (5)

where vsi are the vertices of U in descending order of κ(vsi ).
This static measure fsκ, however, systematically overesti-

mates the subgraph density, as visualised in Fig. 3. This is due
to a key observation for the rest of our analysis: the average
coreness is monotone with respect to the inducing vertex set.

Lemma 1. Let T ⊆ U . Then κ̄U(T ) :=
|T |
|V |

∑
v∈T

κU(v) ≥ κ̄T .

More formally, fsκ overestimates fκ, and therefore the opti-
mistic estimator f̂sκ of fsκ is also a bound for our measure.

A more advanced bound can be derived by optimising the
coreness of the induced graph directly. At the core of this
optimistic estimator lies a tight upper bound for the total
coreness κU of Eq. (2) over all subsets of U , written as

κ∗U = max
T⊆U

κT = max
1≤i≤|U |

κiU , with κiU = max
T⊆U, |T |=i

κT .

To compute the maximum over all fixed cardinality subsets
κiU we first arrange all vertices v1, . . . , v|U | of U in order
of decreasing coreness κU(vi) and observe that κiU is upper
bounded by the partial sums κ̂iU =

∑i
j=1 κU(vj).

We now study the sequence of these partial sums κ̂iU as
follows. Due to their ordering, the vertices are selected one
k-shell of G[U ] at a time in decreasing order of k, so that
within each k-shell the value of κ̂iU increases by a constant k.
This constant changes right after each k-shell (or equivalently,
k-core) is exhausted. There are KU + 1 such complete core
addition indices: each corresponds to exhausting the vertices
of a k-core and thus coincides with the size of a k-core. We
denote these as nk = |VU(k)| for each k-core 0 ≤ k ≤ KU+1.

Note that κ̂iU increases linearly between two consecutive
complete core addition indices nk+1 ≤ i ≤ ni by exactly k.
Thus, κ̂iU is a piece-wise linear sequence in i, whose pieces
switch at indices i = nk. The value of κ̂iU at each such index
can be computed as the cumulative sum of k-shell sizes, each
weighted by k; to compute the rest we use linear interpolation:

κ̂iU =


∑KU
λ=k λ(nλ − nλ+1)

i = nk
0 ≤ k ≤ KU

(i− nk+1)κ̂
nk
U + (nk − i)κ̂nk+1

U

nk+1 − nk
nk+1 ≤ i < nk
0 ≤ k ≤ KU .

Since κ̂nkU = κ̂
nk+1
U + k(nk−nk+1), the above is simplified as

κ̂iU = (i− nk+1)k +

KU∑
λ=k

λ(nk − nk+1) , nk+1 ≤ i ≤ nk. (6)

Eq. (6) reveals κ̂iU to be piece-wise linear (and concave)
function due to the monotonically decreasing increments k.



Algorithm 1: ROSI—discovering the top-κ subgraphs
Input: Result count κ, depth limit dmax, approx. factor α
Output: Top-κ results R

1

Truncated
D

F
S

τ ← −∞, R← {}, ddfs ← 1
2 do
3 truncated← FALSE

4 stack←
{

(σroot, 0)
}

5 while notEmpty(stack) do
6 (σcur, dcur)← pop(stack)
7 for σref ∈ ρ(σcur) do
8 fref, f̂ref ← f̂(σref), fκ(σref)

9 if f̂ref > α · τ then
10 R, τ ← updateResults(R, σref, fref)
11 if dcur < ddfs then
12 push

(
stack, (s, dcur + 1)

)
13 else
14 truncated← TRUE

15 ddfs ← ddfs + 1
16 while ddfs ≤ dmax and truncated
17 return R

Each element of the sequence κ̂iU can now serve as an upper
bound for the maximum total coreness κiU over all subsets of
U with a fixed cardinality of i.

Proposition 2. For the piece-wise linear function of Eq. (6)
1) κiU ≤ κ̂iU , for all 0 ≤ i ≤ |U |
2) κiU = κ̂iU , for i ∈

{
0, n0, . . . , nKU

}
Using the first part of Proposition 2 we can upper bound

the value of fsκ over all subsets of U with cardinality i by

φ̂U (i; γ) =

(
i

|V |

)1−γ (
κ̂iU
i
− κ̄
)γ

. (7)

Hence, the solution of Eq. (4) for fκ(U ; γ) can be written as

max
T⊆U

fκ(T ; γ) ≤ φ̂∗U (γ) = max
0<i≤|U |

φ̂U (i; γ) .

Finally, we replace Eq. (7) into the one above and then use
Proposition 2 (part 2) to show that our final bound is tight.

Corollary 3. The quantity φ̂∗U (γ) is an optimistic estimator
of fκ(U ; γ). In addition, φ̂∗U becomes tight for γ = 1/2.

φ̂∗U (γ) = max
0<i≤|U |

(
i

|V |

)1−γ (
κ̂iU
i
− κ̄
)γ

. (8)

Our proposed bound (8) can be computed in linear time: the
k-core decomposition of G is in O(n) [5], and the maximum
in Eq. (8) compares |U | values, each computable in O(1).

C. Discovering the Top-κ Subgraphs

We next describe Robustly–Connected Subgraphs with
Descriptions (ROSI), the complete algorithm that finds the top-
κ describable subgraphs within language L that maximise fκ.

ROSI is an implementation of the iterative deepening depth
first search variant of BNB [15]. In particular, it repeatedly
invokes a truncated (i.e., depth-limited) depth first search
(DFS) for increasing depth limits until all reachable nodes
have been traversed. This algorithm constitutes a hybrid of
depth-first and breadth-first search; as such it combines the
minimal memory footprint of DFS while it avoids spending
excessive time in few—possibly sub-optimal—deep branches.

Starting with a permissive pruning threshold and empty
result set (line 1) ROSI repeatedly invokes the inner truncated
DFS (ln. 3-16). The latter traverses the tree induced over L by
the refinement operator ρ (ln. 7) starting with the root selector
σroot (ln. 4). During traversal, sub-optimal refinements (ln. 9)
are dropped, while updateResults (ln. 10) checks if the rest
can improve on the so-far best value τ . If they do, the top-
κ results R are updated to contain the better selector and τ
is updated to the value of the worst result τ ← min{fκ(σ) |
σ ∈ R}. In this fashion, although consecutive DFS invocations
restart from s0, as time progresses τ increases and more nodes
get pruned. This repeats until DFS completes un-truncated,
i.e., all reachable refinements have been traversed (ln. 14,16).

While the inner for-loop (ln. 7) has a linear complexity, the
algorithm is a typical NP-hard one. If required, however, ROSI
can terminate after a finite depth limit dmax, which corresponds
to finding the optimal description with at most dmax predicates.
Additionally, the otherwise exact algorithm turns into an α-
approximation one by setting the approximation factor α < 1.

IV. RELATED WORK

Dense Subgraphs and Communities. The typical objective
in dense subgraph discovery is to find the subset of vertices
in a non-attributed graph that induces the subgraph with the
highest edge-to-vertex ratio. Building on this rather simplistic
notion, a plethora of works reinterpret density to take into
account structural information, for instance, using triangle
counts, k-cliques, and k-cores [18]. In the related yet different
community detection, we impose the additional constraint that
the discovered subgraph be disconnected with the rest of
the graph, which usually incurs the need for combinatorial
optimisation [9]. Note that ROSI solves the former task, by
adapting a k-core–based measure for mining named patterns.

Moving on to methods which use graph attributes, we
first classify them as those using graph attributes to steer
a density optimisation scheme toward cohesive subgraphs,
i.e., subgraphs with similar attributes, or others that seek the
densest out of a set of subgroups, i.e., subgraphs described
based on graph attributes, to which ROSI also belongs.

Cohesive Subgraphs. COPAM [16] applies subspace clus-
tering on the vertex attributes to find maximal connected
subgraphs that contain vertices with similar attributes, whose
density surpasses a given threshold. Similarly, [13] (GAMER)
discover non-redundant sets of subgraphs, which must be con-
nected γ-quasi-cliques for a given parameter γ. Note that for
both methods the respective density score needs only surpass
a user-defined threshold and does not contribute to the quality
of each subgraph any further. More recently, [17] (AMEN)
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Figure 4 [Coreness vs. Coverage]: Increasing the trade-off pa-
rameter yields smaller but more robustly connected subgraphs.

introduce an attribute-aware variant of the established mod-
ularity measure [9] to detect ego-net–shaped communities
with similar attributes. These last three methods score each
mined pattern individually. In contrast, the subgraph clustering
PICS of [2] uses low entropy splits of the binary adjacency
and attribute matrices to form vertex clusters with similar
concentration of edges and binary features. We compare to
the most recent works of both tasks.

Subgroup Discovery. This task aims to provide exact de-
scriptions of dataset parts which exhibit exceptional behaviour
of a target concept when compared to the entire dataset [21].
Such target concepts can be the distribution of single or
multiple variables, which can take discrete [1] or continuous
values [11], or more recently incorporate fairness [14] or
constitute the learned parameters of regression models [8].

ROSI finds subgraphs with an exceptional target con-
cept of robustness. Perhaps the closest to our work is
SCPM [19] with a structured density based on quasi-cliques,
which must be sampled from each subgraph to estimate
how many of its vertices these cliques cover. This method
needs many hard-to-specify parameters, is only approximate
and, as our experiments show, slower than ROSI. Although
faster, LDENSE [10] is a greedy search for the describable
subgraph with the highest typical density. Less related are
methods solving the community detection problem, instead.
For instance, [3] also use BNB for exhaustive search but with
target concepts for community detection (LMDL, COIN, etc).

V. EXPERIMENTS

In this section we empirically evaluate ROSI.2 We consider
10 datasets that together span multiple domains and different
kinds of represented entities and relations from public sources
with up to thousands of vertices and millions of edges.
These consist of both graphs and multi-graphs, and describe
various types of networks: social, similarity, co-occurrence,
collaboration networks, etc.

The Generality–Connectedness Trade-Off: We next demon-
strate the effect of the trade-off parameter γ, which offers at
once a smooth and intuitive mechanism to tune the importance
between the size (coverage) and the connectedness (density)
of the discovered subgraph. We study datasets with highly
diverse base predicates that allow the greatest flexibility in the
resulting descriptions, and mine the top result for increasing

2Code and data are available at http://eda.mmci.uni-saarland.de/rosi/.
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Figure 6 [↗ is better]: Scores of top discovered pattern. ROSI
is the best in terms of robustness and competitive on density.

values γ ∈ {0.1, 0.15, . . . , 0.9} and plot the coverage and
connectedness of the topmost result (Fig. 4).

Continuously increasing parameter γ leads to smaller and
more densely connected subgraphs—it thus intuitively steers
the results toward more general or more connected subgraphs.

Efficiency of ROSI: We first study how the efficiency of ROSI
is affected by the pruning potential of our proposed induced-
bound (8) (IB) against the baseline, static-bound (5) (SB).
For the experiments we use the default trade-off parameter
of γ = 1/2; when the computation time (for IB) exceeds 7
hours, we lower the approximation factor α by 0.1 or decrease
the depth limit, favouring a deeper search when possible. We
report the wall-clock times and traversed nodes in Fig. 5.

The experiments corroborate our expectations due to theory:
since our bound is tight, it prunes optimally. Since, in addition,
its complexity is O(n), which matches the complexity of each
iteration, the superior pruning capacity is readily translated to
shorter run-times. At the Importantly, the same trait of f̂IB
allows to practically optimise large real-world graphs, which
would otherwise be impossible within the allowed time limit
of 36 hours. Note that, since ROSI uses the ROSI scheme, it
does not suffer from memory issues, which in other schemes
would be a pronounced problem for the lesser pruning scheme.

Optimality of ROSI: Here we compare ROSI to representa-
tive works in terms of both our proposed robust connectedness
and also typical density (edge-to-vertex ratio), Although our

http://eda.mmci.uni-saarland.de/rosi/
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[0.1 −0.3 ) 3 20 579 1.76 0.868
[0.3 −0.4 ) 3 3 19 150 7.59 0.808
[0.4 −0.45) 3 3 3 15 057 11.85 0.635
[0.45−0.6 ) 3 3 3 3 3 11 455 17.14 0.483
[0.6 −0.9 ] 3 3 3 3 3 3 6 843 27.05 0.289

Table I: The top discovered subgraphs from IMDB tell a story.

task is dense subgraph discovery, we also compare against
more loosely related approaches for community detection.

We first compare against state-of-the-art methods which
describe the found patterns: LDENSE [10], SCPM [19],
and two target concepts for community detection from sub-
group discovery on graphs: COIN [4]) and local modularity
(LMDL [3]). We plot the best results of each method in
Fig. 6a. ROSI scores the highest in terms of robust connect-
edness, while in terms of density it is on par with the rest.

We further compare ROSI with two recent methods for
cohesive subgroups: PICS and AMEN, neither of which do
not provide descriptions. Since these methods output several
patterns, we show all discovered vertex sets in the Pareto front
of the two metrics (Fig. 6b) with empty circles, designating
the absence of a description. Although rarely, other methods
may score a higher density and even robustness than ROSI, as
their optimisation not constrained. To put them in perspective,
however, we further mine the closest subgroup in terms of
Jaccard distance to the one provided by each algorithm,
and link to it the unconstrained solution with an arrow. As
expected, these solutions score lower than those of ROSI.

Interpretable Subgraph Descriptions: To qualitatively assess
our results we mine the top describable subgraph for the IMDB
dataset which offers attributes that are easily interpretable for
a lay person: collaborations of cast members. We track the top
mined description over a varying 0.1 ≤ γ ≤ 0.9 in Table I.

Starting with larger subgraphs (high γ) we read the first
result as: the drama movie cast has a robust connectedness
of 1.8 collaborations on average more than what is usual in
the entire industry. Moving into denser graphs, we find that
established actors (i.e., debutting before ’96) collaborate well
with each other. Here, also a negated predicate is informative:
the London BFI festival is known to nominate more diverse
films, with cast harder to have collaborate with each other,
therefore removing it increases connectedness. We further
find that additionally producing a movie in the US leads
to substantially higher connectedness. Overall, the discovered
patterns reveal an interpretable and actionable story.

VI. CONCLUSION

We studied the problem of finding robustly connected
subgraphs that are easily described. We measure this property
by a coreness-based score that ranks highly those subgraphs
that contain node clusters that are difficult to shatter. We used
a description language that comprises all logical conjunctions

over predicates derived from node attributes. We then showed
how to find a vertex set a) whose induced subgraph maximises
this measure of robust connectedness subject to b) accepting
a simple description from this language.

Due to the combinatorial nature of this problem, to solve it
exactly we use ROSI, the iterative deepening variant of BNB,
which we further improve to efficiently overcome redundant
descriptions in our language. For its use we also develop an
optimistic estimator which is optimal in the default configura-
tion. Importantly, ROSI can also work as a tunable any-time
approximate algorithm.

Our experiments show that, although our problem is inher-
ently exponential, ROSI can analyse real-world graphs with up
to millions of edges and tens of thousands of vertices within
reasonable time. Importantly, the results are meaningful and
easily interpretable.
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