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Abstract—In many scientific tasks we are interested in finding
correlations in our data. This raises many questions, such as how
to reliably and interpretably measure correlation between a mul-
tivariate set of attributes, how to do so without having to make
assumptions on data distribution or the type of correlation, and,
how to search efficiently for the most correlated attribute sets. We
answer these questions for discovery tasks with categorical data.

In particular, we propose a corrected-for-chance, consistent,
and efficient estimator for normalized total correlation, in order
to obtain a reliable, interpretable, and non-parametric measure
for correlation over multivariate sets. For the discovery of the top-
k correlated sets, we derive an effective algorithmic framework
based on a tight bounding function. This framework offers exact,
approximate, and heuristic search. Empirical evaluation shows
that already for small sample sizes the estimator leads to low-
regret optimization outcomes, while the algorithms are shown
to be highly effective for both large and high-dimensional data.
Through a case study we confirm that our discovery framework
identifies interesting and meaningful correlations.

Index Terms—knowledge discovery, information theory, total
correlation, optimization, branch-and-bound

I. INTRODUCTION

Most data are multi-dimensional, and identifying lower-
dimensional correlated subsets of features is a fundamental
aspect in many data analysis tasks. Such correlations are useful
in many application, including the discovery of treatments
for diseases, network intrusions, earthquakes etc. [1]. It is
important that we can measure correlations over multivariate
sets of features, as genes for example may reveal only a weak
correlation with a disease when considered individually, while
the correlation over a group of genes can be very strong [2].
It is also important that our measure is reliable, such that we
do not discover spurious correlations, that it is interpretable,
such that we can understand the results, and non-parametric,
such that we do not need to assume anything about the data
distribution or type of correlation. Last, but not least, as we
need to be able to efficiently discover the top-k most correlated
sets from possibly large quantities of data, we require an
effective search framework for it.

Information theory, with the tools to quantify uncertainty,
offers an attractive framework to do exactly this. We build on
the concept of total correlation, the multivariate extension of
mutual information, which non-parametrically quantifies the
amount of shared information in a set of random variables [3].
Without appropriate normalization, however, scores over sets of
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Figure 1: Top correlated sets discovered on Tic-tac-toe.
Color indicates the selected cells, with red designating the
inclusion of X10 that corresponds to the binary outcome of the
game. In a nutshell, red and blue correlated sets can be inter-
preted as latent factors for win and loss, respectively. (Sec.V-C)

different cardinalities are not comparable, which is a problem
when searching for the top correlations [4]. We hence consider
normalized total correlation, which does not only address
this, but is also interpretable: a score of 0 corresponds to
statistically independent variables, while a score of 1 to the
existence of a variable that “explains” all others.

Although theoretically sound, in practice the score is
unreliable when we estimate it from empirical data: due to
sparsity the plug-in estimator leads to inflated estimates [5].
In our case in particular, the data sparsity induced by the
increasingly larger sets of variables we have to consider during
optimization, can lead to many false discoveries (see Fig. 2 for
a demonstration). In addition, the normalized total correlation
is difficult to optimize; it is neither monotone, nor submodular,
and hence the resulting combinatorial optimization problem for
discovering the top correlated sets is hard to solve efficiently.

To address each of these issues, we build upon the re-
cent advances on deriving corrected-for-chance information-
theoretic estimators well-suited for optimization [6], [7], and



propose a reliable and efficient estimator for normalized total
correlation. Furthermore, we enable effective exhaustive and
heuristic algorithms for the discovery of the top correlated
sets by exploiting various structural properties of the estimator
proposed. Experimental evaluation shows that the estimator
has attractive statistical properties, the algorithms proposed
are indeed effective on a wide range of benchmark data, and
finally, concrete findings in real data show that our framework
discovers interesting and sensible information (see Fig. 1). In
summary, our main contributions are the following: we

i) propose a consistent, corrected-for-chance, and efficient
estimator for the normalized total correlation (Sec. III),

ii) provide effective algorithms for exact, approximate, and
heuristic search (Sec. IV), and finally

iii) perform empirical evaluation on a wide range of real and
synthetic datasets (Sec. V).

We start with preliminaries and problem definition in Sec. II,
and round up with a concluding discussion in Sec. VI. More
details, proofs, and additional experiments, can be found in
the extended version of the paper [8].

II. PROBLEM DEFINITION

We consider data Dn consisting of n i.i.d. samples from a
set of d categorical random variables I = {X1, . . . , Xd}, with
joint distribution p(X1, . . . , Xd), domains VX , and domain
sizes SX = |VX |. We are interested in discovering subsets
X ⊆ I in Dn that exhibit high correlation/redundancy with
respect to the unsupervised information-theoretic concept of
total correlation introduced by Watanabe [3].

The total correlation for a set of variables X =
{X1, . . . , Xm} is defined as

W (X ) =
∑
X∈X

(
H(X)

)
−H(X ) =

m∑
i=2

I(Xi−1;Xi) ,

where Xi represents the set {Xj ∈ X : j ≤ i ≤ m}, with X0

being the empty set. Here, H denotes the Shannon entropy [9],
defined as H(X) = −

∑
x∈VX p(x) log p(x) for random

variable X , and quantifies its uncertainty in bits of information,
assuming logarithm with base 2. Moreover, H(X | Y ) denotes
the conditional entropy of X given another random variable
Y , i.e., H(X | Y ) =

∑
y∈VY p(y)H(X | Y = y), and

quantifies the uncertainty of X conditioned on Y . Lastly,
I(X;Y ) = H(X) − H(X |Y ) is the mutual information,
and measures the amount of shared information between
X and Y . Essentially, total correlation is a multivariate
correlation/redundancy measure quantifying the total amount
of shared information in a set of random variables. As a
function of p, total correlation is order-invariant, and it holds
that W (X ) ≥ 0, with equality if and only if all variables
X ∈ X are statistically independent.

Total correlation, however, is not suitable for comparing
the degree of correlation between different sets of variables,
since cardinalities, joint and marginal entropies, all vary. In
addition, total correlation lacks an intuitive and intepretable
scale, e.g., in [0, 1]. These can be resolved by expressing how
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Figure 2: Correlation-by-chance. Estimated total correlation
for variable set X of increasing cardinality. All variables are
uniformly and independently sampled with domain size 4 and
sample size 1000. Population value for total correlation is 0.
Correlation increases when naive estimator Î is used, but not
for the corrected-for-chance Î0. ( [7], also defined in Sec. III)

far the correlation in a set of variables is from the scenario of
them being maximally correlated. To achieve this, we present
the following proposition.

Proposition 1. Given a set of variables X = {X1, . . . , Xm},
we have that

a) W (X ) ≤
∑
X∈X H(X)−maxX∈X H(X),

b) with equality iff ∃Xi ∈ X s.t., Xj = f(Xi),∀Xj ∈ X .

Defining W̄ (X ) =
∑
X∈X H(X) − maxX∈X H(X), we

obtain the normalized total correlation as

w(X ) = W (X )/W̄ (X ) ,

for which it holds that w(X ) ∈ [0, 1], with 0 being the case
where all X ∈ X are statistically independent, and 1 when
there exists a variable that “explains” all others. By quantifying
the percentage of correlation within X , the score is now better
interpretable, as well as comparable across the different variable
sets with varying joint and marginal entropies.

The data samples Dn induce an empirical distribution p̂
defined using the empirical counts of values in Dn, from which
plug-in estimators can be derived for all the aforementioned
quantities, i.e., Ĥ, Î, Ŵ , ŵ. These estimators, however, are
known to have biases that depend on the domain sizes
of the variables involved [10], with mutual information, in
particular, having a positive bias. While it is easier in general to
obtain good estimates for marginal quantities, total correlation
involves mutual information terms that need to be estimated for
increasingly larger sets of variables. This can lead to situations
with severely inflated estimates (see Fig. 2 for a demonstration).

Even if a more suitable estimator was available, it remains
unclear how to efficiently solve the resulting combinatorial
optimization problem for finding the top correlated sets X ∗
in Dn. Hence, in order to have an overall useful method for
our task, we need to a) derive a corrected-for-chance estimator
ŵ′ for w, and b) find an effective solution to the optimization
problem by exploiting structural properties of ŵ′. We present
solutions to these in Sec. III and Sec. IV respectively.



III. RELIABLE NORMALIZED TOTAL CORRELATION

In this section we derive a corrected for chance, consistent,
and efficient to compute estimator for the normalized total
correlation. The estimator follows the idea of correcting the
plug-in by subtracting values of null hypothesis models, leading
to either parametric (e.g., [6]), or non-parametric solutions (e.g.,
[11]). Unlike the plug-in, such estimators give conservative
estimates for sparse data in high-dimensional spaces, making
them therefore well-suited for reliable optimization.

For the non-parametric case, we proposed a reliable estimator
for mutual information [7] defined as

Î0(X;Y ) = Î(X;Y )− E0[Î(X;Y )] ,

where E0[Î(X ;Y )] is the expected value of Î under the
permutation model [12, p. 214], a non-parametric inde-
pendence model for contingency tables that assumes fixed
marginal counts. The expected value under this model is equal
to E0[Î(X ;Y )] =

∑
σ∈Sn Î(X;Yσ)/n!, where Sn denotes the

symmetric group for n, i.e., the set of all bijections from
{1, . . . , n} to {1, . . . , n}, and Yσ denotes the Y samples
permuted according to a σ ∈ Sn. Exploiting symmetries, this
value can be computed in O(nmax{SX , SY }) (see [13], [14]
for the computation, and [15] for the complexity). For the rest
of this paper we denote E0[Î(X;Y )] with m0(X,Y, n).

Following the same non-parametric correction principle,
and assuming we can adequately estimate marginal entropies
Ĥ(X), we can define a corrected-for-chance estimator for the
normalized total correlation by plugging Î0 and arrive at

m∑
i=2

(
Î(Xi−1;Xi)−m0(Xi−1, Xi, n)

)
/W̄ (X ) .

However, unlike the plug-in ŵ, this estimator violates the
order-invariance of total correlation since the correction m0

is not a function of p̂, but rather a function of domain sizes
and marginal counts. To ensure order-invariance, we select the
order of variables that leads to the most conservative estimate
for the normalized total correlation, which translates to the
order that maximizes the correction term, i.e.,

ŵ0(X ) =

∑m
i=2 Î(Xi−1;Xi)

W̄ (X )

−
max
σ∈Sm

∑m
i=2m0(Xσ(i−1), Xσ(i), n)

W̄ (X )

=ŵ(X )− t0(X , n) ,

where Xσ denotes set X ordered according to a σ ∈ Sm.
Regarding efficiency, ŵ0 is clearly infeasible to compute in

practice. For a set of m variables, there are m− 1 calculations
of the permutation model with each subsequent calculation
having an increased cost (since domain sizes SXσ(i−1)

can grow
exponentially with i), and there are m! possible permutations
to find the maximum correction term, resulting in a total
complexity of O(m2(m − 1)!nSX ). We dramatically reduce
this complexity by first replacing the exact calculation of the
expected value m0 with an upper bound, and then propose a

relaxation to this bound such that we can efficiently find the
order σ∗ ∈ Sm of variables maximizing the correction term.

Proposition 2 ( [11], Thm. 7). For variables X,Y, with domain
sizes SX , SY , and sample size n, it holds that

m0(X,Y, n) ≤ log
n+ SXSY − SX − SY

n− 1
.

We denote this upper bound with m0̄(X,Y, n), and the
corresponding correction term t0̄(X , n), i.e.,

t0̄(X , n) = max
σ∈Sm

m∑
i=2

m0̄(Xσ(i−1), Xσ(i), n)/W̄ (X ) .

Now, while the exact expected values have been replaced
with something more efficient, t0̄(X , n) as function of the joint
domain sizes SXσ(i−1)

remains infeasible: for every σ ∈ Sm
and i ∈ [2,m], we need to compute the joint domain size of
Xσ(i−1) with Xσ(i). We proceed to relax this requirement.

Assuming a strictly positive distribution p, i.e., p(X = x) >
0 for all X ⊆ I and x ∈ VX , joint domain sizes can be
written as a product of marginal domain sizes, i.e., SX =∏
X∈X SX . Furthermore, a relaxation that considers only the

joint contribution of the variables in X , leads to the bound

m¯̄0(Xi−1, Xi, n) = log
n+

(∏
X∈Xi−1

SX
)
SXi

n− 1
,

and to the following correction term

t¯̄0(X , n) = max
σ∈Sm

m∑
i=2

m¯̄0(Xσ(i−1), Xσ(i), n)/W̄ (X ) .

In the following theorem we establish that this quantity is
both a consistent upper bound for t¯̄0, and efficient to compute
without explicitly considering all permutations σ ∈ Sm.

Theorem 1. For set of variables X = {X1, . . . , Xm}, it holds

a) t¯̄0(X , n) ≥ t0̄(X , n)

b) limn→∞ t¯̄0(X , n) = 0

c)
∑m
i=2m¯̄0(Xσ(i−1), Xσ(i), n) is maximized for σ∗ ∈ Sm

with SXσ∗(1)
≥ SXσ∗(2)

· · · ≥ SXσ∗(m)

We now have an efficiently computable correction term
t¯̄0(X , n), going from an initial complexity of O(m2(m −
1)!nSX ), to that of O(m + m logm), where m logm is for
sorting the domain sizes SX , for X ∈ X . In addition, as
an upper bound to t0̄, this correction is as conservative with
regards to its estimates, which is a design goal for reliability.
Finally, we arrive at the reliable normalized total correlation

ŵ¯̄0(X ) = ŵ(X )− t¯̄0(X , n) .

In addition to being very efficient, the consistency of the plug-
in Ĥ (see, e.g., [16]), together with Th. 1b), implies that ŵ¯̄0

is a consistent estimator for the normalized total correlation.



IV. OPTIMIZATION

Here, we provide algorithms for the following optimization
problem: given data Dn consisting of n i.i.d. samples of random
variables I = {X1, . . . , Xd}, as well as a positive integer k,
find the top-k subsets X ∗1 , . . . ,X ∗k ⊆ I with

ŵ¯̄0(X ∗i ) = max{ŵ¯̄0(X ) : ŵ¯̄0(X ∗i−1) ≥ ŵ¯̄0(X ),X ⊆ I}. (1)

As is common in hard combinatorial problems, we instantiate
the branch-and-bound framework to obtain an exact algorithm
for Eq (1). This framework consists of two main ingredients:
a branch operator to enumerate some abstract search space
Ω, and an admissible bounding function for the optimization
function f : Ω→ R at hand. The branch operator is a function
r : P(Ω) → P(Ω) that non-redundantly generates the search
space from some designated root element ⊥ ∈ Ω, i.e., for all
ω ∈ Ω there must be a unique sequence ⊥ = ω1, . . . , ωl = ω
such that ωi+1 ∈ r(ωi) for i = 1, . . . , l − 1.

An admissible bounding function f̄ , also known as
optimistic estimator, must guarantee the property f̄(ω) ≥
max{f(ω′) : ω′ ∈ r∗(ω)}, where r∗(ω) denotes the set of all
ω′ ∈ Ω that can be generated from ω by multiple applications
of r. The value f̄(ω) is called the potential of element ω. With
these, a branch-and-bound algorithm enumerates Ω starting
from ⊥, tracks the best solution, and prunes expanding elements
with f̄ that cannot yield an improvement over the best solution.
In addition, the framework provides the option of relaxing the
required result guarantee to that of an α-approximation for
accuracy parameter α ∈ (0, 1]. Therefore, an α < 1 allows to
trade accuracy for efficiency in a principled manner.

The ideal bounding function for ŵ¯̄0 in our case would be

w̄∗¯̄0(X ) = max{ŵ¯̄0(X ′) : X ⊆ X ′ ⊆ I} .

Efficiently computing this function, however, would imply
an efficient algorithm for the original optimization problem.
Instead, we shift our attention into independently deriving tight
bounds for the two terms of ŵ¯̄0(X ), i.e., an upper bound for
ŵ(X ) and a lower bound for t¯̄0(X , n), in order to arrive at
a looser, but efficient to compute bounding function. Here,
however, it is not possible to both derive tight bounds and also
guarantee their admissibility for arbitrarily enumerated search
spaces. The difficulty stems from the inability to “predict” their
behavior with respect to the subset relation—both numerators
are monotonically increasing functions, but this property does
not extend together with the normalizer W̄ (X ). For example,
for a X ′ ⊇ X it might be that t¯̄0(X ′, n) ≥ t¯̄0(X , n), but for a
different superset X ′′ ⊇ X that t¯̄0(X ′′, n) ≤ t¯̄0(X , n).

It turns out, that under a more strict partial order we can
induce a certain structure into our problem that allow us to
derive tight, admissible bounds for both terms.

Definition 1. Given I = {X1, . . . , Xd}, we say that X ′ ⊆ I is
a low entropy extension of a X ⊆ I , denoted as X ⊆H X ′, if
X ⊆ X ′, and for all X ′ ∈ X ′ \ X , Ĥ(X ′) ≤ minX∈X Ĥ(X).

We can guarantee that this partial order holds in the
enumerated search space by simply considering a decreasing-
entropy branching operator of the form

rH(X ) = {X ∪{X} : Ĥ(X) ≤ min
X′∈X

Ĥ(X ′), X ∈ I\X} ,

i.e., it holds that X ⊆H X ′ for all X ′ ∈ rH(X ). This operator
is equivalent to the standard alphabetical enumeration order, i.e.,
rA(X ) = {X ∪ {Xi} : i > max{j : Xj ∈ X}, i ≤ d}, after
initially sorting I in descending entropy order. We now proceed
with showing that under this partial order, the correction term
t¯̄0 is monotonically increasing.

Theorem 2. For subsets X ,X ′ of I with X ⊆H X ′, it holds
that t¯̄0(X , n) ≤ t¯̄0(X ′, n).

Following from the theorem, a trivial bounding function
can be derived using the upper bound 1 for ŵ(X ), i.e.,

ŵ¯̄0(X ′) =ŵ(X ′)− t¯̄0(X ′, n)

≤1− t¯̄0(X , n) = w̄¯̄0mon(X ) ,

for all X ′ that are low entropy extensions of X . It is clear,
however, that w̄¯̄0mon(X ) is not tight: it upper bounds ŵ(X ) with
the maximum possible value for the normalized total correlation,
without taking into consideration both the correlation in X
so far, nor any information with regards to the remaining
branch. We derive a much tighter upper bound for ŵ by further
exploiting the structure of the branch operator. We define
RX = {X ∈ I \X : Ĥ(X) ≤ minX′∈X Ĥ(X ′)} to be the set
of all refinement elements of X , and w̄(X ) the quantity

w̄(X ) =

∑m
i=2 Î(Xi−1;Xi) +

∑
X′∈RX Ĥ(X ′)

W̄ (X ) +
∑
X′∈RX Ĥ(X ′)

,

i.e., the plug-in ŵ(X ) after adding the marginal entropies of the
refinement elements of X . The following theorem establishes
that w̄(X ) is an upper bound to ŵ(X ) with respect to ⊆H .

Theorem 3. For a X ⊆ I and any X ′ ⊆ I with X ⊆H X ′, it
holds that w̄(X ) ≥ ŵ(X ′).

We can now define the tighter bounding function
w̄¯̄0ref(X ) = w̄(X ) − t¯̄0(X , n), which has an extra O(|RX |)
complexity compared to w̄¯̄0mon(X ). Note that in practice we
use both: first evaluate w̄¯̄0mon that we get for free by caching
t¯̄0 after computing ŵ¯̄0, and then proceed with w̄¯̄0ref if it fails.

We summarize the resulting exhaustive method for the
discovery of reliable correlated sets in Algorithm 1 in [8]. For
heuristic search, we consider the standard greedy algorithm,
i.e., level-wise search where only the best candidate is refined,
coupled with rH and w̄¯̄0ref for pruning.

V. EVALUATION

In this section we empirically evaluate the proposed correla-
tion discovery framework. We perform experiments on synthetic
data in order to investigate the performance of the estimators,
we use a wide selection of benchmark data to evaluate the
performance of the algorithms and bounding function w̄¯̄0, as
well as provide concrete findings in example exploratory tasks.
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sizes n = {10, . . . , 100} and estimators τ = {ŵ, ŵ0, ŵ0̄, ŵ¯̄0}.

A. Estimator performance

Here we evaluate the performance of the corrected-for-chance
estimators ŵ0, ŵ0̄, ŵ¯̄0 proposed and the plug-in ŵ. For this
evaluation, we create synthetic data in the following way. We
randomly and uniformly sample joint probability distributions
p(i) ∈ Pd[a,b], where Pd[a,b] denotes the set of all joint probability
distributions with d dependent random variables and resulting
w score in [a, b]. Each random variable has domain size 3. For
example, P4

[0,0.3] is the set of probability distributions p(X ),
X = {X1, . . . , X4}, with SXi = 3, and w(X ) ∈ [0, 0.3]. We
augment these distributions with 3 independent and uniformly
distributed random variables, also of domain size 3. Each
p(i) ∈ Pd[a,b] has then its own set of 2d+3 − 1 marginalized
distributions for which we can compute the w score.

We consider dimensionalities d = 2, 3, 4, and four different
regimes P d[0.1,0.2), P

d
[0.2,0.3), P

d
[0.3,0.4), P

d
[0.4,0.5], representing

weak, low, medium, and high correlation. We sample one
distribution for each combination, resulting in 12 different
distributions p(i), i = 1, . . . , 12. We consider data sizes n =
{10, 20, 30, . . . , 100}, and for each p(i) and n we sample 500

datasets according to p(i) and denote them as D(i)
n,j , j ∈ [1, 500].

We pick n = {10, . . . , 100}, as it is expected, given that all
estimators are consistent, that their behavior carries on for
larger sample sizes and distributions.

We evaluate the estimators using regret, as it is an accurate
summary for consistency, convergence, and generalization error.
The regret is defined as rn(τ, p(i)) = E

[
w(X ∗i )−w(X ∗i,j,n,τ )

]
,

where X ∗i represents the true maximizer of population p(i),
and X ∗i,j,n,τ the maximizer in D

(i)
n,j according to an estimator

τ = {ŵ, ŵ0, ŵ0̄, ŵ¯̄0}, for which we use exhaustive search to
obtain (to compute the inefficient ŵ0, ŵ0̄, we use the decreasing
entropy permutation). The expected value is with respect to j ∈
[1, 500]. We average regrets across the different p(i) to obtain
rn(τ,P [u,v]

[a,b] ), e.g., rn(τ,P [2,3]
[0,0.5]) would be the average regret

of estimator τ across all p(i) ∈ P3
[0,0.5] and p(i) ∈ P4

[0,0.5].

We start with Fig. 3 and plot rn(τ,P [2,4]
[0.1,0.5]), i.e. the average

regret across all p(i). We observe that in general, the corrected
estimators perform well. They have a smaller regret across all
n, and for some n there is even a factor of 5 improvement. In
addition, they converge faster to a regret close to 0. Regarding
the efficient ŵ¯̄0, we see that despite the necessary relaxations,
it has performance that is on par with both ŵ0 and ŵ0̄.

Finally, in Fig. 4 we plot the regrets averaged over the
different dimensionalities, i.e., rn(τ,P2

[0.1,0.5]), rn(τ,P3
[0.1,0.5]),

and rn(τ,P4
[0.1,0.5]). Under this different view, we see that the

plug-in estimator ŵ has an increasing difficulty to converge
to 0 regret with respect to dimensionality, while the corrected
estimators do not exhibit this behavior, as expected. Among
the corrected, the differences are more profound for d = 2
with ŵ¯̄0 having worse performance. Overall, we see that
our proposed corrected-for-chance estimators ŵ0, ŵ0̄, and ŵ¯̄0,
clearly outperform the plug-in, sometimes even by a factor of
5. In addition, we observe that the efficiently computable ŵ¯̄0

has statistical properties that are on par with ŵ0 and ŵ0̄.

B. Optimization performance

In this section we investigate the performance of the
bounding function w̄¯̄0ref and algorithms proposed for exhaustive
(BNB) and heuristic search (GREEDY) for the reliable normal-
ized total correlation ŵ¯̄0. We consider benchmark data from
the KEEL data repository, and particularly all classification
datasets with no missing values and d ≥ 7, resulting in 49
datasets with n ∈ [101, 1025010] and d ∈ [7, 91], summarized
in Table I in [8]. All metric attributes are discretized in 5
equal-frequency bins. Our code is available online.1

We employ the two algorithms in order to retrieve the top
correlated set. For BNB, we set α to be the highest possible
in increments of 0.05 such that it terminates in less than 30
minutes, and report in Table I the runtime, the percentage of the
pruned search space, the depth of the solution, the maximum
depth BNB had to selectively reach, and the quality ŵ¯̄0 of the
top correlated set [8]. For GREEDY we report runtime and the
difference of the quality for the top result with that from BNB.
We average runtimes over 3 independent executions.

We observe that BNB is highly efficient as it finds the
optimum solution (α = 1) in less than 30 minutes for 42 out
of 49 datasets. In 30 of them, it takes less than a minute. For all
49, it requires 77 seconds on average. The bounding function
w̄¯̄0ref is very effective in pruning, enabling the discovery of
optimum solutions on datasets such as coil2000 and move.
libras with 86 and 91 attributes, that with exhaustive search
would otherwise be impossible. In addition, an average of 5
maximum depth combined with an average solution size of
2.2, shows that the synergy of w̄¯̄0ref and enumerated search
space allows to selectively explore based on the structure of
the data, and not simply by cardinality.

The GREEDY algorithm requires only a couple of seconds
on the majority of the datasets. On average, it terminates after
3 seconds. In addition, the solutions produced by GREEDY
are almost optimal considering that there are only 2 negligible
cases where the two algorithms differ. In general, for a solution
on the second level GREEDY cannot “stray” enough. We do
observe, however, that even for solution cardinalities of 3 and
4, GREEDY solutions are identical to those of BNB.

Overall, both algorithms are very effective with w̄¯̄0ref as a
bounding function. The BNB algorithm would be preferable in

1https://github.com/pmandros/wodiscovery
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Figure 4: Regret curves averaged over different dimensionalities. Average regret rn(τ,P2
[0.1,0.5]) (left), rn(τ,P3

[0.1,0.5])

(middle), and rn(τ,P4
[0.1,0.5]) (right), for sample sizes n = {10, . . . , 100} and estimators τ = {ŵ, ŵ0, ŵ0̄, ŵ¯̄0}.

scenarios were solution guarantees are required, while GREEDY
when efficiency is more important, e.g., on very large datasets.

C. Example discoveries

Last, we proceed with presenting concrete findings on Tic-
tac-toe, a game of two players picking a symbol from {x, o}
and, taking turns, mark their symbols in an unoccupied cell
of a 3 × 3 game board. A player wins the game with 3
consecutive cells in a row, column, or diagonal. The dataset
consists of 958 end-game, winning configurations, i.e., there
are no draws. There are 10 input variables I = {X1, . . . , X10},
where Xi, i ∈ [1, 9] represent the cells of the board, taking
values in {x, o, b} with b denoting an empty cell, and X10 is
the binary outcome of the game for player with symbol x.

We present in Fig. 1 the top-9 results retrieved with ŵ¯̄0.
The variables X1, . . . , X9 are mapped to their corresponding
board positions and color indicates the result. Red designates
the result set contains X10. We observe that top-1, 2, 8, 9 are
all winning configurations, and top-3 has X5 from which the
majority of winning configurations go through. Top-4, 5, 6, 7
are losing configurations, something that can be validated by
superimposing, for example, top-1 and top-4. The blue results
also appear to be four rotations of a unique configuration,
indicative of a potential common losing pattern. In a nutshell,
ŵ¯̄0 identifies interesting “red” and “blue” correlated sets that
can act as latent factors for win and loss, respectively.

As a further experiment, we use estimators ŵ, ŵ0, ŵ0̄ with
exhaustive search. We report that ŵ essentially orders the
results according to cardinality, i.e., the top-1 is all the input
variables I , the next 9 are all subsets of I with size 9 etc. For
ŵ0 and ŵ0̄ there is agreement with the top 4 of ŵ¯̄0, but the
next 5 are all supersets of the top 2 with an extra cell. We find
the results of ŵ¯̄0 to be more interesting in this case.

VI. CONCLUSION

We considered the problem of measuring and efficiently
discovering interpretable correlated sets from data. We adopted
an information theoretic approach, and proposed a reliable and
efficient estimator for normalized total correlation. In addition,
we proposed effective algorithms for exhaustive and heuristic
search, enabled by a tight bounding function.

For future work, we see many possibilities for extensions
and improvements. Different estimators can be derived with
appropriate algorithms. For example, the estimator of Vinh

et al. [6] would allow incorporating prior knowledge to the
problem. A conditional version of normalized total correlation
would allow the discovery of correlated sets with respect to
control variables. The algorithmic framework of Pennerath [17]
for computing entropic measures could potentially be applied
here to efficiently discover results for larger k values.
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