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Abstract

The reliable fraction of information is an attrac-
tive score for quantifying (functional) dependen-
cies in high-dimensional data. In this paper, we
systematically explore the algorithmic implications
of using this measure for optimization. We show
that the problem is NP-hard, justifying worst-case
exponential-time as well as heuristic search meth-
ods. We then substantially improve the practical
performance for both optimization styles by deriv-
ing a novel admissible bounding function that has an
unbounded potential for additional pruning over the
previously proposed one. Finally, we empirically
investigate the approximation ratio of the greedy
algorithm and show that it produces highly competi-
tive results in a fraction of time needed for complete
branch-and-bound style search.

1 Introduction
Given a data sample Dn = {d1, . . . ,dn} drawn from the joint
distribution p of some input variables I and an output variable
Y , it is a fundamental problem in data analysis to find variable
subsets X ⊆ I that jointly influence or (approximately) de-
termine Y . This functional dependency discovery problem,
i.e., to find

arg max{Q(X ;Y ) : X ⊆ I} (1)

for some real-valued measure Q that assesses the dependence
of Y on X , is a classic topic in the database community [Ra-
makrishnan and Gehrke, 2000, Ch. 15], but also has many
other applications including feature selection [Song et al.,
2012] and knowledge discovery [Ziarko, 2002]. For instance,
finding such dependencies can help identify compact sets of
descriptors that capture the underlying structure and actuating
mechanisms of complex scientific domains (e.g., [Ghiringhelli
et al., 2015; Ouyang et al., 2017]).

For categoric input and output variables, the measure Q
can be chosen to be the fraction of information [Cavallo and
Pittarelli, 1987; Giannella and Robertson, 2004; Reimherr and
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Figure 1: Dependency-by-chance. Estimated fraction of information
for variables X of increasing domain size (4 to 2048) to independent
Y (domain size 4) for fixed sample size (1000). Estimated depen-
dency increases for naive estimator F̂ , while the corrected-for-chance
estimator F̂0 accurately estimates population value F (X;Y ) = 0.

Nicolae, 2013] defined as

F (X ;Y ) = (H(Y )−H(Y | X ))/H(Y ) ,

where H(Y ) =
∑
y∈Y p(y) log p(y) denotes the Shannon

entropy. This score represents the relative reduction of un-
certainty about Y given X . It takes on values between 0 and
1 corresponding to independence and exact functional depen-
dency, respectively.

Estimating the score naively with empirical probabilities
p̂, however, leads to an overestimation of the actual depen-
dence between X and Y , a behavior known as dependency-
by-chance [Romano et al., 2016]. In particular, since the
bias is increasing with the domain size of variables [Roulston,
1999], it is unsuitable for dependence discovery where we
have to soundly compare different variable sets of varying
dimensionality and consequently of widely varying domain
sizes (see Fig. 1). In some feature selection approaches (see,
e.g., [Guyon and Elisseeff, 2003]) this problem is mitigated
by only considering univariate and pairwise dependencies.
Alternatively, some algorithms from the database literature,
e.g., [Huhtala et al., 1999; Kruse and Naumann, 2018], ne-
glect this issue by assuming a closed-world, i.e., the unknown
data generation process p is considered equal to the empirical
p̂ [Giannella and Robertson, 2004].

Both of these approaches are infeasible in the statisti-
cal setting with arbitrary sized variable sets that we are in-
terested in. Instead, here, the fraction of information can
be corrected by subtracting its estimated expected value
under the hypothesis of independence. This gives rise to



the reliable fraction of information [Mandros et al., 2017;
Vinh et al., 2010] defined as

F̂0(X ;Y ) = F̂ (X ;Y )− Ê0(F̂ (X ;Y )) ,

where Ê0(F̂ (X ;Y )) =
∑
σ∈Sn F̂ (X;Yσ)/n! is the expected

value of F̂ under the permutation model [Lancaster, 1969, p.
214], i.e., under the operation of permuting the empirical Y
samples with a random permutation σ ∈ Sn. This estimator
can be computed efficiently in O(nk) for X with domain size
k. Moreover, the maximization problem Eq. (1) can be solved
effectively by a branch-and-bound scheme: the maximally at-
tainable F̂0 for supersets of some solution X can be bounded
by the function f̄mon(X ) = 1− Ê0(F̂ (X ;Y )), derived from
the monotonicity of Ê0(F̂ ( · ;Y )) [Mandros et al., 2017].

This, however, is a rather simplistic bounding function that
leaves room for substantial improvements. Moreover, it is
unclear whether one has to rely on exponential-time worst-
case branch-and-bound algorithms in the first place. Finally,
the option of heuristic optimization has not yet been explored.

To this end, this paper provides the following contributions:

1. We show that the problem of maximizing the reliable
fraction of information is NP-hard.

2. We then greatly improve the practical performance for
both optimization styles by deriving a novel bounding
function f̄spc(X ), which has an unbounded potential for
additional pruning over the previously proposed one.

3. Finally, we report extensive empirical results evaluating
the proposed bounding function and algorithms.

2 Reliable Dependency Discovery
Let us denote by [n] the set of positive integers up to n. We
assume a set of discrete random variables A = I ∪ {Y } is
given along with an empirical sample Dn = {d1, . . . ,dn}
of their joint distribution. For a variable X we denote its
domain, called categories (or distinct values), by V (X) but
we also write x ∈ X instead of x ∈ V (X) whenever clear
from the context. We identify a random variable X with the
labeling X : [n]→ V (X) it induces on the data sample, i.e.,
X(i) = di(X). Moreover, for a set S = {S1, . . . , Sl} of
labelings over [n], we define the corresponding vector-valued
labeling by S(i) = (S1(i), . . . , Sl(i)). With XQ for a subset
Q ⊆ [n], we denote the map X restricted to domain Q.

We define cX : V (X) → Z+ to be the empirical counts
of X , i.e., cX(x) = |{i ∈ [n] : X(i) = x}|. We fur-
ther denote with p̂X : V (X) → [0, 1], where p̂X(x) =
cX(x)/n, the empirical distribution of X . Given another
random variable Z, p̂Z |X=x : V (Z) → [0, 1] is the em-
pirical conditional distribution of Z given X = x, with
p̂Z|X=x(z) = cX∪Z(x,z)/cX(x) for z ∈ Z. However, we use
p̂(x) and p̂(z |x) respectively whenever clear from the context.
These empirical probabilities give rise to the empirical con-
ditional entropy Ĥ(Y |X) =

∑
x∈X p̂(x)Ĥ(Y |X = x),

the empirical mutual information Î(X;Y ) = Ĥ(Y ) −
Ĥ(Y |X), and the empirical fraction of information
F̂ (X;Y ) = Î(X;Y )/Ĥ(Y ). We abbreviate the correction

term Ê0(F̂ (X;Y )) as b̂0(X,Y, n) and the unnormalized ver-
sion as m̂0(X,Y, n) = b̂0(X,Y, n)Ĥ(Y ).

2.1 Specializations and Labeling Homomorphisms
Since we identified sets of random variables with their corre-
sponding sample-index-to-value map, they are subject to the
following general relations of maps with common domains.

Definition 1. Let A and B be maps defined on a common
domain N . We say that A is equivalent to B, denoted as
A ≡ B, if for all i, j ∈ N it holds that A(i) = A(j) if and
only if B(i) = B(j). We say that B is a specialization of A,
denoted as A � B, if for all i, j ∈ N with A(i) 6= A(j) it
holds that B(i) 6= B(j).

A special case of specializations is given by the subset relation
of variable sets, e.g., if X ⊆ X ′ ⊆ I then X � X ′. The
specialization relation implies some important properties for
empirical probabilities and information-theoretic quantities.

Proposition 1. Given variables X , Z and Y , with X � Z,
the following statements hold:

a) there is a projection π : V (Z) → V (X), s.t. for all
x ∈ V (X), it holds that p̂X(x) =

∑
z∈π−1(x) p̂Z(z),

b) Ĥ(X) ≤ Ĥ(Z)

c) Ĥ(Y |Z) ≤ Ĥ(Y |X),

d) Î(X;Y ) ≤ Î(Z;Y ),

In order to analyze monotonicity properties of the permuta-
tion model, the following additional definition is useful.

Definition 2. We call a labeling X homomorphic to a label-
ing Z (w.r.t. the target variable Y ), denoted as X - Z, if
there exists σ ∈ Sn with Y ≡ Yσ such that X � Zσ .

Importantly, the inequality of mutual information for spe-
cializations (Prop. 1d) carries over to homomorphic variables
and in turn to their correction terms.

Proposition 2. Given variables X , Z and Y , with X - Z,
the following statements hold:

a) Î(X;Y ) ≤ Î(Z;Y )

b) m̂o(X,Y, n) ≤ m̂o(Z, Y, n)

2.2 Search Algorithms
Effective algorithms for maximizing the reliable fraction of
information over all subsets X ⊆ I are enabled by the concept
of bounding functions. A function f̄ is called an admissible
bounding function for an optimization function f if for all
candidate solutions X ⊆ I, it holds that f̄(X ) ≥ f(X ′) for
all X ′ with X ⊆ X ′ ⊆ I. Such functions allow to prune all
supersets X ′ of X whenever f̄(X ) ≤ f(X ∗) for the current
best solution X ∗ found during the optimization process.

Branch-and-bound, as the name suggests, combines this
concept with a branching scheme that completely (and non-
redundantly) enumerates the search space 2I . In addi-
tion, branch-and-bound can trade optimality for efficiency
with parameter α ∈ (0, 1] governing the desired approx-
imation guarantee. Here, we consider optimized prun-
ing for unordered search (OPUS), an advanced variant of



u1 u2

u3 u4

u5

B1 B3

B4 B2

X1 X2 X3 X4 Y

1 1 a 1 1 a
2 a 2 2 a a

S1 3 3 a a a a
4 4 a 4 a a
5 a 5 a 5 a

6 a a a a b
7 a a a a b

S2 8 a a a a b
9 a a a a b
10 a a a a b

11 b c c c c
12 c b c c c

S3 13 c c b c c
14 c c c b c
15 c c c c c

Figure 2: Base transformation example. A set cover instance U =
{u1, . . . , u5} and B = {B1, B2, B3, B4} (left). The resulting D15

using τ1(U,B) (right) (bold indicates the set cover)

branch-and-bound that effectively propagates pruning infor-
mation to siblings in the search tree [Webb, 1995]. A com-
monly used alternative to complete branch-and-bound search
for the optimization of dependency measures is the stan-
dard greedy algorithm (see [Guyon and Elisseeff, 2003;
Brown et al., 2012]). This algorithm only refines the best
candidate in a given iteration.

3 Hardness of Optimization
In this section, we show that the problem of maximizing F̂0

is NP-hard by providing a reduction from the well-known
NP-hard minimum set cover problem: given a finite uni-
verse U = {u1, . . . , un} and collection of subsets B =
{B1, . . . , Bm} ⊆ 2U , find a set cover, i.e., a sub-collection
C ⊆ B with

⋃
C = U , that is of minimal cardinality.

The reduction consists of two parts. First, we construct
a base transformation τ1(U,B) = Dl that maps a set cover
instance to a dataset Dl such that set covers correspond to
attribute sets with an empirical fraction of information score
F̂ of 1 and bias correction terms b̂0 that are a monotonically
decreasing function of their cardinality (see Fig.2). In a second
step, we calibrate the b̂0 terms such that, when considering the
corrected score F̂0, they cannot change the order between at-
tribute sets with different F̂ values but only act as a tie-breaker
between attribute sets of equal F̂ value. This is achieved by
copying the dataset Dl a suitable number of times k such
that the correction terms are sufficiently small but the overall
transformation, denoted τk(U,B) = Dkl, is still polynomial.

4 Refined Bounding Function
The NP-hardness established in the previous section excludes
(unless P=NP) the existence of a polynomial time algorithm
for maximizing the reliable fraction of information, leaving
therefore exact but exponential search and heuristics as the
two options. For both, and particularly the former, reducing

the search space can lead to more effective algorithms. For this
purpose, we derive in this section a novel bounding function
for F̂0 to be used for pruning. The ideal function would be

f̄ideal(X ) = max{F̂0(X ′;Y ) : X ⊆ X ′ ⊆ I} .
Computing this function is equivalent to the original optimiza-
tion problem and hence NP-hard. We can relax the maximum
over all supersets to the maximum over all specializations of
X . That is, we define a bounding function f̄spc(X ) through

f̄spc(X ) = max{F̂0(X ′;Y ) : X � X ′}
≥max{F̂0(X ′;Y ) : X ⊆ X ′ ⊆ I} = f̄ideal(X ) .

While this definition constitutes an admissible bounding
function, it is unclear how it can be efficiently evaluated. Let
us denote by R+ the operation of joining a labeling R with
the target attribute Y , i.e., R+ = {R} ∪ {Y }. This definition
gives rise to a simple constructive form for computing f̄spc.

Theorem 3. The function f̄spc can be efficiently computed as
f̄spc(X ) = F̂0(X+;Y ) in time O(n|V (X )||V (Y )|).

Intuitively, X+ constitutes the most efficient specialization
of X in terms of growth in F̂ and b̂0. In contrast, the bounding
function f̄mon(X ) = 1− b̂0(X , Y, n) of [Mandros et al., 2017]
assumes that full information about the target can be attained
(i.e., F̂ = 1) without “paying” an increased b̂0 term. The fol-
lowing proposition shows this idea leads to an inferior bound.
Proposition 4. Let X ⊆ I and ∆ = f̄mon(X )− f̄spc(X ). The
following statements hold:

a) ∆ ≥ 0 for all datasets, i.e., f̄spc(X ) ≤ f̄mon(X )

b) there are datasets D4l for all l ≥ 1 s.t. ∆ ∈ Ω(1− 1
log 2l )

Thus, we have established that f̄spc is not only tighter than
f̄mon, but even that the difference can be arbitrary close to 1
(for an increasing domain size of Y ). Put differently, their ratio,
and thus the potential for additional pruning, is unbounded.

5 Evaluation
For ease of comparison to [Mandros et al., 2017], we consider
datasets from the KEEL data repository [Alcalà-Fdez et al.,
2011]. In particular, we use all classification datasets with
d ∈ [10, 90] and no missing values, resulting in 35 datasets
with 52000 and 30 rows and columns on average, respectively.
All implementations are available online1.

We use two metrics for evaluation, the relative runtime
difference and the relative difference in number of explored
nodes. For methods A and B, the relative runtime difference
on a particular dataset is computed as rrd(A,B) = (τA −
τB)/max(τA, τB), where τA and τB are the run times for
A and B respectively. The rrd score lies in [−1, 1], where
positive (negative) values indicate that B is proportionally
faster (slower). For example, a rrd score of 0.5 corresponds to
a factor of 2 speed-up, 0.66 to a factor of 3, 0.75 to 4 etc. The
relative nodes explored difference rnd is defined similarly. For
both scores, we consider (−0.5, 0.5) to be a region of practical
equivalence, i.e., a factor of 2 of improvement is required to
consider a method “better”.

1https://github.com/pmandros/fodiscovery

https://github.com/pmandros/fodiscovery
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Figure 3: Evaluating f̄spc for branch-and-bound optimization. Relative nodes explored difference (left) and relative runtime difference (right)
between methods OPUSspc and OPUSmon. Positive (negative) numbers indicate that OPUSspc (OPUSmon) is proportionally “better”. The datasets
are sorted in decreasing number of attributes.
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Figure 4: Evaluating f̄spc for heuristic optimization. Relative time
difference between methods GREEDYspc and GREEDY. Positive
(negative) numbers indicate that GREEDYspc (GREEDY) is propor-
tionally “better”. Data are sorted in decreasing number of attributes.

5.1 Branch-and-bound
Here we investigate the effect of the refined bounding function
by comparing OPUSspc and OPUSmon. In Fig. 3 we present
the comparison between OPUSspc and OPUSmon. The left plot
demonstrates that f̄spc can lead to a considerable reduction
of nodes explored over f̄mon. In particular, 15 cases have at
least a factor of 2 reduction, 7 have 4, and there is one 1 with
760. For 20 cases there is no practical difference. The plot
validates that the potential for additional pruning is indeed
unbounded (Sec. 4). In terms of runtime efficiency (right plot),
OPUSspc is “faster” in 70% of the datasets. In more detail,
and considering practical improvements, 12 datasets have at
least a factor of 2 speedup, 6 have 4, 1 has 266, while only
2 have a factor of 2 slowdown. Moreover, we observe from
the plot (where datasets are sorted in decreasing number of
attributes) a clear correlation between number of attributes
and efficiency: the 6 out of 10 datasets with the slowdown are
also the ones with the lowest number of features. Overall, f̄spc
leads to a more effective optimization with branch-and-bound,
and particularly for the higher-dimensional cases.

5.2 Greedy
We begin the evaluation with the performance of f̄spc for
heuristic search. We present the relative runtime differences of
GREEDY and GREEDYspc in Fig. 4. The plot shows that f̄spc
indeed improves the efficiency of the heuristic search, as we
find that for 12 datasets there is a speedup of at least a factor
of 2, and 8 of at least a factor of 4.

Next, we investigate the quality of the greedy results. In
Fig. 5 we plot the differences between the F̂0 score of the
results obtained by greedy and branch-and-bound on each
dataset. Note that branch-and-bound uses the same α values
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Figure 5: Evaluating the heuristic algorithm for result quality. Left:
difference in F̂0 between methods GREEDYspc and OPUSspc (i.e.,
F̂0(X ∗

grd;Y )− F̂0(X ∗
bnb;Y )) for α = 1. Negative values close to 0

indicate GREEDY retrieves nearly optimal solutions. Data are sorted
in increasing quality difference. Right: difference for α < 1. Positive
values indicate that GREEDY retrieves better solutions when OPUS
uses guarantees α < 1. Data are sorted in increasing α values.

as with the experiments in Sec 5.1, and that we only plot
the non-zero differences in the two plots, left for α = 1,
i.e, optimal solutions, and right for α < 1, i.e., approximate
solutions with guarantees.

At a first glance, we observe that there is no difference in
21 out of 35 cases considered, 7 where greedy is better (this
of course on the datasets where α < 1), and 7 for branch-and-
bound. Out of the 21 cases where the two algorithms have
equal F̂0, 16 of them have α = 1, i.e., the greedy algorithm is
optimal roughly 45% of the time. Moreover, the cases where
branch-and-bound is better is only by a small margin, 0.03
on average, while greedy “wins” by 0.1 on average. Another
observation from the right plot of Fig. 5 is that the largest
differences between the two algorithms is for the 3 datasets
where the lowest α values where used, i.e., 0.05, 0.1, and 0.35.

6 Conclusion

We investigated the algorithmic aspect of discovering depen-
dencies in data using the reliable fraction of information,
where we proved the NP-hardness of the problem and derived
a refined bounding function for more effective optimization.
Moreover, we considered an improved branch-and-bound al-
gorithm and explored the aspects of heuristic optimization.
The experimental evaluation showed that the refined bounding
function is very effective for both types of optimization, and
that the greedy algorithm provides nearly optimal results.
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