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Abstract.

We present a minimum description length-based
algorithm for finding the regular correspondences
between related languages and show how it can
be used to quantify the similarity between not only
pairs, but whole groups of languages directly from
cognate sets. We employ a two-part code, which
allows to use the data and model complexity of the
discovered correspondences as information-theoretic
quantifications of the degree of regularity of cognate
realizations in these languages. Unlike previous work,
our approach is not limited to pairs of languages, does
not limit the size of discovered correspondences, does
not make assumptions about the shape or distribution of
correspondences, and requires no expert knowledge or
fine-tuning of parameters. We here test our approach
on the Slavic languages. In a pairwise analysis
of 13 Slavic languages, we show that our algorithm
replicates their linguistic classification exactly. In a
four-language experiment, we demonstrate how our
algorithm efficiently quantifies similarity between all
subsets of the analyzed four languages and find that
it is excellently suited to quantifying the orthographic
regularity of closely-related languages.

1 Introduction

Systematic correspondences between related
languages form the basis for much linguistic
work. Researchers employ them to e.g. improve

teaching, analyze the similarity or relatedness of
languages qualitatively, or to formulate hypotheses
about their mutual intelligibility. Beyond that, they
are relevant to tasks such as machine translation.

Correspondence rules could be established on
the basis of various linguistic features, such as
the languages’ alphabets, their orthographies, their
phonologies, or their inflectional and derivational
morphologies. As an example, the Polish, Czech,
Russian, and Bulgarian forms of the pan-Slavic
word for happiness could be analyzed with the
following correspondences, reflecting orthographic
and (slight) phonetic differences:

(PL) szcz e ści e
(CS) št ě st ı́
(RU) ñ÷ à ñòü å

(BG) ù à ñò èå

In our project, we focus on modeling the mutual
intelligibility of related Slavic languages. In the
current stage of the project, we focus on the
reading intercomprehension setting, i.e. a scenario
where a native speaker of one Slavic language,
such as Polish, is reading e.g. a newspaper
written in a related language he or she has never
learned or otherwise been exposed to, such as
Czech or Croatian. It it clear that in such a
scenario, successful intercomprehension requires



a high degree of cognacy between the involved
languages. However, different cognates may
have gone through various changes throughout the
languages’ evolutions, e.g. due to spelling reforms,
or they may have been adapted by the languages
differently in the first place, e.g. loanwords being
adapted according to the orthographic versus
phonetic principle depending on the time of
borrowing. Thus, a reader will be faced with having
to decipher many different correspondences to his
or her native language(s). We hypothesize that
native readers will encounter more difficulties with
some of these correspondences than with others,
and we want to find information-theoretic baselines
for predicting the correspondences’ degrees of
difficulty and thus the languages’ expected mutual
intelligibility.

For this endeavour, we first require the lists of
correspondences between the languages. While
much linguistic work has been done on the Slavic
family, we have shown in previous work that
the existing collections of correspondence rules
from historical linguistics are highly incomplete in
terms of coverage of modern cognate words [7].
Since the sheer amount of correspondences
is staggering, we require to automatically
identify the correspondence rules present in
available data. Regular correspondences
have often been addressed in previous work
and the proposal to learn them automatically
from data goes back as far as the 1960s
([10]). Newly-available computational power
has faciliated much progress over the past two
decades, and topics as diverse as cognate
identification/reconstruction or transliteration
generation (cf., e.g. [2, 18, 13]), discovery
or quantification of etymological relationships
([23, 14, 3]), lost languages decipherment
([21]) or discovery of pseudo-morphological
sub-word alignments ([20]) have been addressed.
However, the existing approaches do not fulfill our
requirements – for our purposes, correspondences
cannot be limited to a maximum number of
characters or to a maximum number of languages,
and fully disjoint character sets must be possible.

Since existing systems overwhelmingly focus
on the phonetic modality, they typically impose
a maximum length on correspondences of at

most two by two characters and assume that
all data uses the same alphabet. However,
the orthographic modality is different from the
phonetic. Firstly, since languages may employ
digraphs or trigraphs for representing single
phone(me)s, orthographic correspondences
clearly cannot be limited in this way. Secondly,
used scripts may be completely disjoint. For
example, some Slavic languages employ
the Cyrillic alphabet and some employ the
Latin alphabet, and many even modify either
script with various diacritics. Furthermore, in
intercomprehension, we cannot assume that
only correspondences to one single language
are relevant. Native readers may be multilingual
and we can reasonably assume that many also
possess some knowledge of other languages,
such as Russian or – nowadays – English,
which may influence their intercomprehension
process both positively or negatively. One way
to quantify the influence of multiple languages
on intercomprehension would be to consider the
entropies of the adaptation process between
cognates in each known language and the target
language, which would posit that readers use their
knowledge of each language separately. However,
it may be that individually, two languages, call them
A and B, have a high entropy when transforming
words into a third language, call it C, whereas
taking the knowledge from A and B together,
i.e. transforming words from A and B jointly into
C, has much lower or even zero entropy. In
order to capture this fully, we require three-way
correspondences between all the languages,
and more generally N -way correspondences
between any N languages, which is a feat we
have not found in any of the systems we reviewed.
While marginalization can and has been used
to construct N -way correspondence rules (e.g.
in [14]), we found that this approach can quickly
magnify small errors and we thus want to handle
N -way rules natively.

We want to use these correspondences
to compute meaningful, objective baseline
expectations regarding the mutual intelligibility
of languages and language groups, taking into
account a reader’s knowledge of any number of
other languages. In other words, we aim to define



similarity measures not only for pairs, but groups
of languages.

This leaves us with the following questions: How
can we find correspondences of arbitrary sizes
between an arbitrary number of languages which
employ arbitrarily different alphabets? And how
can we use these correspondences to objectively
quantify linguistic similarity between not only pairs,
but groups and even families of languages? These
are the questions we answer in this paper. For this,
we employ the Minimum Description Length (MDL)
principle [9]. MDL is a statistically well-founded
approach to identifying the best model for given
data, and has e.g. been used to model changes
in etymologically related words [23].

Using MDL, we deem the set correspondences
that describes the data most succinctly to be
the best. We propose an efficient, deterministic
algorithm to infer good sets of correspondence
rules directly from data. We then show how
their coding-theoretic complexity and regularity can
be used to quantify similarity in a fine-grained
fashion. We present two experiments: In a pairwise
analysis of 13 Slavic languages, we confirm
that the notion of linguistic similarity captured by
our algorithm is a strong reflection of linguistic
classification. In a four-language experiment
between Czech, Polish, Russian, and Bulgarian,
we find that our algorithm efficiently and intuitively
quantifies linguistic similarity between subsets
of all analyzed languages. The four-language
experiment shows us that our approach is well
suited to assessing the orthographic regularity of
closely-related languages, and we discuss in detail
how this works.

The rest of the paper follows the usual structure:
we give an overview of our key ideas and some
terminology in Section 2. Then, we present
our model and describe our learning algorithm in
Section 3. We report learned correspondences
and provide an information-theoretic analysis of
language similarities in Section 4, and set our
model in relation to previous work in Section 5
before concluding in Section 6.

2 Key Ideas and Terminology

Our central idea is that if two languages L1 and L2

are highly related, then they will share a great deal
of their sequential structures. Here, we focus on
the sequential similarity between cognate words.
That is, we assume that for every cognate realized
in different languages there is some underlying
sequence of latent variables that governs its exact
surface realization. These underlying sequences
will manifest as correlating sequences of the
symbols of the languages, and we want to learn
them automatically from data.

To this end, we employ the Minimum Description
Length (MDL) formalism, which posits that the
optimal model is the one resulting in the most
concise description of the modeled data, i.e.
induction is performed by compressing the data.
Importantly, in MDL-based modeling, we use only
the data as evidence for our models and forego
making assumptions about the nature of models in
the form of prior probabilities.

For our model, we employ a two-part code [15],
posing the optimization problem

M = arg min
M∈M

L(M) + L(D|M).

Here, D is the data at hand, M the explaining
model, andM the model class we draw our models
from. L(M) is the length, in bits1, of the description
of model M . Similarly, L(D|M) is the length,
in bits, of the data given model M . Description
lengths are simply code lengths: Shannon’s source
coding theorem [19] tells us that the best prefix-free
code for some data is derived from the probabilities
of the data, i.e.

L(M) + L(D|M) = − log p(M)− log p(D|M).

From this, we see that two-part MDL can be
considered to be a regularized maximum likelihood
approach very similar to Bayesian inference.

We aim to find correspondence rules
exploratively, i.e. without imposing a generative
model that governs their shape or distribution.
Concretely, we treat correspondences simply as
associated strings of characters with no assumed

1We use log(.) = log2(.) throughout the paper.



underlying distribution at all. Doing this allows to
observe the actual distributions of correspondence
rules in data and to compute objective, unbiased
string-level measures of linguistic similarity via
the joint compressibility of cognates in various
languages.

2.1 Evaluating and Inferring Rules

In order to evaluate how good a given set of
correspondence rules is, we should evaluate how
well these rules describe the data. However, this is
not entirely unproblematic. For example, if we are
given the Polish-Czech correspondences (s,š), (sz,
š), (c,t), (cz,t), and (szcz,št), then we can segment
the sub-strings szcz and št e.g. as shown below.

a) s z c z
š t b) s z c z

š t c) szcz
št

We call any such segmentation an alignment.
Lacking an evaluation function, we cannot tell
which of the three example alignments above is the
best. However, if we are given the best alignment
of our data, then we can straightforwardly compute
probabilities for each of the correspondence rules,
from which we can then compute the optimal rule
costs. Similarly, knowing the costs of the rules
allows to compute the optimal alignment.

Thus, our problem lends itself well to an
Expectation-Maximization (EM) [5] approach. The
expectation step is straightforward; we simply align
the data with the current model. The maximization
step can be explained intuitively as follows: If
the optimal alignment is c), using rule (szcz, št),
then any of the rules in alignments a) and b)
could be used at least as often in the data as
(szcz,št). Thus, if the rules in alignment c) are
the optimal ones, i.e. better than those in b), the
rules in b) will also be better than the ones in
a). Assuming that the complexity of larger rules
is higher than that of any of the smaller rules they
contain, we can combine smaller rules into larger
ones to see if merged rules’ utility in describing the
data outweighs their increased complexity. Using
this approach, we will deterministically obtain good
results as long as the best alignments with the
current rule set do not exclude too much evidence
needed to discover competing rules.

With this in mind, initialization of this model
is straightforward: if we start by assuming no
structure at all, then we will find the dominant
structures in the data. Thus, we start training from
an alignment in which every symbol in the data is
placed solely in one correspondence rule. We call
such an alignment a null alignment and call rules
which contain exactly one symbol from exactly one
language singleton rules.

3 MDL Code for Regular
Correspondences

Mathematically, our model class is the set of sets
of tuples associating strings from the individual
languages’ alphabets. We use a two-part code
and must define both L(M) and L(D|M). Our
code must ensure that a) shorter rules are rated
less complex than longer ones, b) rules using very
common letters are rated less complex than those
using rare letters, and c) there is no bias against
sparsely-populated rules.

In the following, we use count(x) to indicate the
number of occurrences of x, and use code(x) to
indicate the shortest possible code word for x. We
are interested only in measuring complexity, so we
ignore the exact code words for any element and
instead focus only on their optimal lengths. We
begin by discussing our model code L(M).

3.1 Model Code

Let N be the number of languages. Our models
consist of N alphabets Σi and a correspondence
rule table, which we call Π. Our total model
description length is

L(M) =

N∑
i=1

[L(Σi)] + L(Π).

In order to describe the rules from Π, we require
the code lengths for all letters σ from all alphabets
Σi. However, for ease of exposition, we first
discuss L(Π). In essence, our Π is a list of
independent correspondence rules. We group
rules by which languages they are defined on in
order to identify many rules even when N is large.
To explain why we do this, let us first explain in
detail how we encode rules.



Encoding a Correspondence Rule Rules π ∈ Π
are of the form π = (π1, ...,πN ) with πi ∈ Σ∗i .
To encode one such rule, we must include the
information a) how long the string from each of the
languages is and b) which letters it contains.

It is important to note that rules can be partially
empty, i.e. undefined on some languages. If
we were to specify explicitly that a rule has a
length of 0 on some channel, we would impose
a bias particularly against very sparsely-populated
rules – specifying a rule containing one symbol
on two languages each would incur N − 2 times
the overhead of specifying a length of 0 for all
the empty languages. However, if for every rule
we already know which language sub-group it is
defined on, then we can avoid this bias by only
sending lengths where they are non-zero. This
helps to find rules with few carrier languages –
a fact that is especially important since our rules
grow from small (and having few carrier languages)
to large (and having many carrier languages).

Let π ∈ Π, π = (π1, ...,πN ) with πi ∈ Σ∗i be a rule.
To transmit π, we send all N entries independently
of each other, specifying lengths and character
sequences only where they are non-empty:

L(π) =

N∑
n=1
πn 6=ε

[
LN(|πn|) +

∑
σ∈πn

L(code(σ))
]
.

We encode each element’s length with LN, the
universal code for the integers [16], which is the
MDL-optimal code for natural numbers of unknown
size. For transmitting the strings themselves, we
use code(σ), i.e. the Shannon code for symbol
usages in all rules.

Encoding the Rule Table As mentioned above,
we specify for every rule which subset of languages
it is defined on in order to avoid bias against sparse
rules. We can straightforwardly classify each rule
according to which subset it is defined on. Then,
we must encode how many rules defined on each
of the different subsets there are.

There are 2N − 1 different language subsets
on which a rule may be defined. We encode
the number of rules of each kind via LN. These

numbers must be offset since LN(n) is defined for
n ≥ 1 and there may be zero rules of a certain kind.

Additionally, to describe our data items using
rules, we must include the counts for the Shannon
code for using each of these rules in our
description. We specify these counts by a
data-to-model code [22]. Data-to-model codes
are used to code uniformly from an enumeration
of models, i.e. without preference towards any
particular model. Since we know that none of the
rules described in the model will have a count of
zero, the appropriate data-to-model code is given
by the number composition of the distribution’s total
counts over the number of rules. Thus:

L(Π) =

2N−1∑
i=1

LN(|ΠCi
|+ 1) +

∑
π∈ΠCi

L(π)

+ LN(TΠ) + log

(
TΠ − 1

|Π| − 1

)
where TΠ =

∑
π∈Π count(π) and where ΠCi

is the
set of rules defined on the i-th subset of languages
as enumerated in some canonical way.

Encoding the Alphabets For describing
the strings of each rule, we again use the
Shannon-optimal code for the individual alphabets’
symbols. Thus, we must first transmit the unigram
code(σ)∀σ ∈ Σi for every alphabet Σi. We again
do this by a data-to-model code, i.e. by coding
uniformly from all possible distributions.

Setting TΣi
=
∑
σ∈Σi

c(σ), the total transmission
cost relating to some Σi becomes

L(Σi) = LN(|Σi|) + LN(TΣi
) + log

(
TΣi − 1

|Σi| − 1

)
.

The alphabet sizes are constant for any given
data set and do not have to be included in
the code to be able to do meaningful inference,
but nonetheless quantify the complexity of the
individual languages and should thus be included.



3.2 Data Code L(D|M)

To encode data with our model, we simply transmit
the correspondences the current model uses to
describe each data entry. We model our data as
a list of independent sequences correspondence
rules, i.e.

L(D|M) = LN(|D|) +
∑
d∈D

L(d|M)

where L(d|M) = LN(|d|) +
∑
π∈d

L(code(π)).

For individual data entries, we transmit
their lengths via LN and specify the used
correspondence rules via the best usage code for
the rules, code(π). We next discuss how to find
the best such segmentations for data entries, and
how to infer rules.

3.3 Alignment Procedure

Computationally, finding the best description for
a data item d requires finding the best alignment
for it. We here formulate this as a shortest-path
problem in a weighted, directed graph and used
Dijkstra’s algorithm [6] to find optimal alignments.
Nodes in the graph represent index tuples, while
edges describe the applicable rules. By partial
order reduction, we make these graphs as small
as possible. Nonetheless, due to the combinatorial
nature of the problem, bottlenecks exist in memory
consumption and runtime. With the current
implementation, we can obtain exact results for up
to five languages within a few hours on a 4GB
RAM, 2.5GHz single core desktop machine.

3.4 Training Procedure

Inferring correspondences of arbitrary length is
a combinatorial, non-convex optimization problem
defined over a large, unstructured search space.
However, as we argued in Section 2, we can
compute optimal alignments for all data if we are
given a rule table with costs, Likewise, if we are
given an alignment of all data, we can improve
our model from it. Therefore, we can find good
solutions by Expectation-Maximization [5].

At the beginning of training, we initialize our
model with a null alignment. A null alignment is
one in which only singleton rules are used, i.e. only
rules which consist of exactly one character from
exactly one language.

Expectation Step In the Expectation step, we
align all data items with the rules from the current
rule table Π and the current usage costs for the
rules. This results in new counts for all rules from
which we compute costs in the next step. We
employ Laplace correction in order to ensure that
the algorithm is always able to explain all data and
may choose to not use locally suboptimal patterns.

The time complexity of our E step is O(|D| ·
|R|2), where R is the maximum number of rules
simultaneously applicable in a single data entry.

Maximization Step In the Maximization step, we
optimize our code table. We do this by merging
together the two patterns with the highest decrease
in overall description length. The intuition behind
this is the observation that if a longer pattern is
useful, then any sub-pattern of it will be at least
as or more useful. It is important to note that
in this way, the learned correspondences grow
according to their statistical significance. Thus, in
this fashion, we deterministically learn the most
important structures in the data.

The time complexity of our M step is O(|D| ·
A2/2), where A is the maximum number of rules
used to align a single data entry.

4 Experiments & Results

Firstly, we present a standard pairwise analysis for
a group of languages for which we have collected
data we deem representative. We compute
pairwise distances, construct a phylogenetic tree,
and compare it to linguistic classifications, which
we find the algorithm fully reproduces. Secondly,
we present a detailed analysis of four languages
simultaneously, showing how we can quantify
and characterize linguistic similarity in much more
detail than previously possible. For both cases, we
also report some of the learned correspondences.



data all lang. CS-PL RU-BG CS-PL-RU-BG
size 207 778 778 778

Table 1. Data set sizes for experiments.

We considered comparing to phylogenetic trees
computed by other models. However, our approach
is completely novel in that it allows to assess
language sub-set similarity, which is the aspect
we wish to focus on. Therefore, we opted to
only compare the phylogenetic tree to the linguistic
classification as a sanity check.

4.1 Data Sets

We compiled two data sets for our experiments.
Firstly, we use Swadesh lists for 13 modern
Slavic languages taken from the wiktionary.2

The languages are Czech, Polish, Slovak,
Lower Sorbian, Upper Sorbian (west Slavic),
Russian, Belarussian, Ukrainian, Rusyn (east
Slavic), Bulgarian, Macedonian, Slovenian,
and Serbo-Croatian (south Slavic). For
Serbo-Croatian, we have both a version in
Latin script and one on Cyrillic script.

Secondly, we add a set of Slavic cognates
containing internationalisms and pan-Slavic words
for Czech, Polish, Russian, and Bulgarian.3

All our data is in raw orthographic form without
transcriptions of any kind. It consists mostly of
verbs, adjectives, and nouns. For all of our
experiments, we use only those entries that contain
words for all languages in question. While our
algorithm is agnostic to gaps in data, this makes
for easier comparison.

4.2 Experiment 1: Classic Pairwise Analysis

For a pairwise analysis, we require some measure
of distance between pairs of languages. In
MDL-based modeling, it is common to use
Normalized Compression Distance (NCD) [4] for
this. Intuitively, NCD measures how hard it is to

2Taken from https://en.wiktionary.org/wiki/
Appendix:Slavic_Swadesh_lists.

3Compiled from [12] and [1].

describe X and Y together compared to how hard
it is to describe them separately. It is defined as

NCD(X,Y ) =
L(X,Y )−min(L(X,X),L(Y ,Y ))

max(L(X,X),L(Y ,Y ))

where L(X,Y ) is the description length when
encoding languages X and Y jointly. NCD is a
mathematical distance; lower values mean that two
data sets are more similar.

We show the NCD values for all pairwise
comparisons for the 13 languages in Table 2. We
use ISO 639-1 and ISO 639-3 codes to identify the
languages, except for Serbo-Croatian, which we
denote by SCl in its Latin version and and SCc in
its Cyrillic version. We indicate lowest and highest
NCDs per row in bold and italic text, respectively.

usb lsb CS SK PL SL SCl SCc MK BG RU UK rue BE

usb .00 .52 .53 .52 .60 .57 .61 .62 .76 .75 .68 .70 .67 .64
lsb .52 .00 .65 .66 .72 .67 .68 .71 .87 .85 .80 .82 .78 .74
CS .53 .65 .00 .41 .56 .50 .53 .55 .71 .69 .61 .64 .58 .59
SK .52 .66 .41 .00 .58 .48 .51 .56 .68 .66 .60 .65 .59 .60
PL .60 .72 .56 .58 .00 .64 .64 .67 .82 .79 .71 .74 .69 .63

SL .57 .67 .50 .48 .64 .00 .36 .39 .59 .58 .61 .65 .60 .61
SCl .61 .68 .53 .51 .64 .36 .00 .04 .54 .57 .63 .66 .62 .63
SCc .62 .71 .55 .56 .67 .39 .04 .00 .51 .53 .60 .63 .59 .59
MK .76 .87 .71 .68 .82 .59 .54 .51 .00 .54 .74 .78 .75 .75
BG .75 .85 .69 .66 .79 .58 .57 .53 .54 .00 .70 .77 .70 .71

RU .68 .80 .61 .60 .71 .61 .63 .60 .74 .70 .00 .52 .53 .51
UK .70 .82 .64 .65 .74 .65 .66 .63 .78 .77 .52 .00 .45 .45
rue .67 .78 .58 .59 .69 .60 .62 .59 .75 .70 .53 .45 .00 .54
BE .64 .74 .59 .60 .63 .61 .63 .59 .75 .71 .51 .45 .54 .00

Table 2. NCDs for 13 Slavic languages.

Our table reveals that languages from the same
linguistic group tend to have lower NCD than
languages from differing groups. The south
Slavic group is linguistically further divided into a
southwestern group (Slovene and Serbo-Croatian)
and a southeastern sub-group (Macedonian and
Bulgarian). Indeed Slovenian and Serbo-Croatian
are more similar to languages from the west
Slavic group than to the east Slavic group.
Serbo-Croatian in Latin script was assessed to be

https://en.wiktionary.org/wiki/Appendix:Slavic_Swadesh_lists
https://en.wiktionary.org/wiki/Appendix:Slavic_Swadesh_lists


slightly closer to the other languages that use Latin
script, while the Cyrillic version is more similar to
other Cyrillic languages.

For easier viewing, we construct a phylogenetic
tree from the NCDs by the neighbor joining method
[17] and place the root manually. It is shown
in Figure 1.4 The greater the horizontal distance
between languages, the less similar they are.

Figure 1. NCD-based Slavic phylogenetic tree.

The algorithm groups the languages according
to their linguistic classification [11]. It identifies
Bulgarian and Macedonian as slight outliers in the
south Slavic group, and Polish, Upper and Lower
Sorbian as such in the west Slavic group. This
is an expected result. Bulgarian and Macedonian
are outliers in that they have largely lost case.
Words from these languages oftentimes employ
zero endings or comparatively shorter endings
than the other languages. This leads to overall
very low BG-BG and MK-MK description lengths,
but still high NCDs to the other languages. Polish
is more complex than Slovak and Czech are, which
is likely due to its frequent use of digraphs. This
leads to an increased complexity of Polish patterns.
Finally, Lower Sorbian in particular uses a number
of etymologically different words in the Swadesh
list, which seems to be the cause for its outlier
status. Its word forms nonetheless share enough
structure with Upper Sorbian, Polish, and the other
West Slavic languages to be grouped accordingly.

4Picture generated with http://etetoolkit.org/
treeview/, tree generated with scikit-bio: http:
//scikit-bio.org/.

(PL)
(CS)

z ie m i a
z e m ě

r ó g
r o h

r o z d z i e l i ć
r o z d ě l i t

(RU)
(BG)

ì î ë î ä î ñ ò ü

ì ë à ä î ñ ò

ï î ë í ûé

ï ú ë å í

Figure 2. Sample correspondences for CS-PL, RU-BG.

In Figure 2, we present example alignments from
the models for the CS-PL and RU-BG language
pairs. The discovered correspondences are of
slightly different granularities. More complex rules
are learned only if the data warrants their use for
compression.5 We next show how this can be
exploited for fine-grained analysis of similarity.

4.3 Experiment 2: Quantifying Similarities of
Subsets of Four Languages

Restricting ourselves to pairwise analyses and
grouping the most similar languages together
in a phylogeny may cause us to miss many
subtle similarities. Our algorithm is agnostic
to the number of input languages and can
be used to efficiently analyze more than two
languages at a time. This allows for highly
detailed information-theoretic quantification of the
similarities among groups of languages. To
illustrate how this works, we first present some
four-way CS-PL-RU-BG alignments in Figure 3.

Some of the discovered rules link only two or
three languages, leaving the other language(s) to
be described by separate rules. We have selected
some examples to highlight the differences in i
vowels. In our Polish-Czech-Russian-Bulgarian
data, there is enough evidence to discover
various rules, such as (,,è,è) or (,i,è,è), but
not enough evidence to include a four-way rule
(j,i,è,è). In consequence, the internationalism
specjalny (special) is analyzed with the three-way i
correspondence plus a Polish singleton rule (j,,,) –

5The algorithm learns larger rules if given more data
containing the same correspondence rules. This can be
exploited to learn larger rules by forcing the algorithm to
continue training after reaching the minimum description length.
Doing so corresponds to treating the given data as more
statistically representative of the language than it objectively
is. Interestingly, rules learned in such a fashion overwhelmingly
have linguistically meaningful character (cf. [8]), corresponding
to either orthographic or morphological units.

http://etetoolkit.org/treeview/
http://etetoolkit.org/treeview/
http://scikit-bio.org/
http://scikit-bio.org/


(PL)

(CS)

(RU)

(BG)

m i ł y
m i l ý
ì è ë ûé

ì è ë

p i ć
p ı́ t
ï è òü

ï è ÿ

(PL)

(CS)

(RU)

(BG)

s p e c j a l n y
s p e c i á l n ı́
ñ ï å ö è à ëü í û é

ñ ï å ö è à ë åí

Figure 3. CS-PL-RU-BG correspondences. Top left:
nice/smooth, top right: to drink, bottom: special.

despite the individual phonetic realizations of the
internationalism being nearly identical.6 In other
cases, using two rules – such as (i,ı́,,) plus (,,è,è) in
pić (to drink) – is a good choice, showing that both
of these rules are regular enough to be discovered.
A four-way rule combining them is not selected as
its complexity surpasses its utility.

This reflects the fact that while there is an
underlying latent variable, namely the i vowel, the
realizations employed by each of the languages
differ in entropy. In some cases, the joint entropy,
relative to the amount of available data, between
all four languages is low enough for a four-way
rule to be discovered. In other cases, the joint
entropy between some groups of the languages,
e.g. the two groups Polish and Czech as well as
Russian and Bulgarian, is low enough to warrant a
rule linking these language groups, but the overall
four-way joint entropy prevents a larger rule from
being learned. Thus, the information-theoretic
complexity and regularity of the discovered rules
directly reflect the degree of statistical regularity
in the parallel realizations. At the same time, the
discovered rules themselves provide an elegant
and intuitive avenue for human interpretation.

To quantify the amount of structure that
individual languages share, we define the
shared Description Length (sDL) of languages
Li1 , ...,Lik as

sDL(Li1 , ...,Lik) :=
∑

π∈Q(Li1
,...,Lik

)

L(π)+L(code(π))

where Q(Li1 , ...,Lik) contains all rules which are
non-empty (i.e. contain symbol sequences) exactly

6In this case, Polish cannot employ i to encode the i vowel
since i would orthographically combine with the preceding c –
ci encoding a different consonant.

cs-pl

ru-bg

PL

BG

CS

RU

CS-PL

RU-BG

shared Description Length

Figure 4. sDLs for Czech-Polish and Russian-Bulgarian.
Total sDLs: CS-PL 1852.43 bits vs. RU-BG 1496.62 bits.
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Figure 5. sDLs for Czech-Polish-Russian-Bulgarian.

for languages Li1 , ...,Lik . sDL values quantify the
relative complexity and importance of the rules for
a specific sub-group of languages.

Figure 4 shows sDLs for the CS-PL and RU-BG
models. It reveals that RU diverges more than
BG does from the RU-BG joint description, and
that CS does so for CS-PL. Because we chose
only cognate tuples defined for all four languages
for this experiment, we can also compare the
two language pairs meaningfully. There, we see
that CS-PL requires a larger description, and that
Czech alone takes up a somewhat larger fraction
of total description length.

The four-way Shared Description Lengths
shown in Figure 5 are a quantification of the
similarities between all language sub-sets from our
Czech-Polish-Russian-Bulgarian set. Four-way
sDL is the biggest contributor overall. It quantifies
the prevalence and complexity of the structure
shared by all four languages. Each of the
individual languages have significant overheads to
the four-way shared description length.

Czech is the language with the highest individual
description length. This appears to be caused in
part by the larger alphabet of Czech, stemming
from the large number of diacritically-modified



symbols. For example, every Czech vowel can be
marked as long with the čárka, giving us e.g. é
as long version of e. Investigating the alignments,
we also see that there are a few words where the
Czech cognate has an additional morpheme over
the Polish one, causing series of Czech singletons.

The algorithm furthermore identifies a significant
proportion of correspondences between Czech
and Polish and between Russian and Bulgarian.
The sDLs of these two language pairs are almost
equal, with Russian-Bulgarian slightly outweighting
Czech-Polish at 623.43 bits for CS-PL, 638.87
bits for RU-BG. If we interpret this as evidence
for a significant (disjoint) grouping between the
two languages, there is as much evidence for
grouping Czech and Polish as there is for
grouping Russian and Bulgarian.7 Beyond this, we
identify further, more subtle similarities, many of
them between Russian and other, not-yet-covered
language subsets. This indicates that Russian
very often shares a regular structure with some of
the other languages, possible evidence of either
Russian being a dominant language exerting heavy
influence on the others, or of Russian having
diverged the least from a common ancestor.

Causes of Sub-Group sDLs: If we go back
to our example correspondences in Figure 3,
we can see two different effects that lead to
three-way correspondences: Firstly we see the
already-discussed fragmentation of larger rules
due to differences in entropies of orthographic
realizations8 (as in specjalny (special)), and
secondly we can observe the influence of
morphological differences. Bulgarian regularly
employs zero endings where the other languages
use non-zero endings, as is the case in miły (nice,
smooth). In the example, this leads to a three-way
correspondence rule (y,ý,ûé, ) between Polish,
Czech, and Russian, which is empty for Bulgarian.

It is easy to see that divergences in phonology,
orthography, morphology, and lexis may all
influence the results of our analyses. If we

7Keep in mind that this is purely on the basis of superficial
word form similarity.

8Rule fragmentation can of course also be due to irregular
phonetic shifts, which may lead to additional entropy in the
orthographic representation.

were to compare languages with highly similar
derivational morphologies but completely different
lexicons, we would be able to identify only
the corresponding affixes or endings and be
left with single-language rules for the stems.
Likewise, if we were to compare languages that
share their stem lexicon but employ radically
different derivational morphologies, we would be
able to identify correspondences only within the
stems. This indicates that our algorithm in
its current form is perfectly suited for capturing
and assessing the orthographic regularity of
closely-related languages: If we exclude, to
the extent possible, the other factors that may
cause rule fragmentation and use our algorithm to
analyze only words that are morphologically and
phonetically highly regular, then we will be able to
quantify the regularity of the parallel orthographic
realizations of the words.

5 Relation to Previous Work

The previous work most related to ours is
the correspondence-based models presented by
Wettig et al. ([23]) and by Nouri and Yangarber
([14]). Similar to them, we leverage the statistical
regularity present in cognate data to assess
linguistic similarity. Similar to theirs, our algorithm
discovers statistically meaningful correspondence
rules directly from data. Unlike theirs, our model
does not limit the size of correspondences and
allows for direct discovery of correspondences
between any number of languages.

Many of the existing approaches that discover
correspondences make strong generative
assumptions in modeling, e.g. via use of
Poisson distributions or Dirichlet processes
([21, 20, 3]). This imposes unwarranted biases
on the distribution and shape of discovered
correspondences and thus precludes objective
quantification of shared structures. In contrast,
we forego imposing assumptions, which allows for
objective quantification of linguistic similarity.

In this work, we focus on correspondences as
a means to the end of quantifying cross-linguistic
similarity. Nonetheless, the algorithm may produce
useful correspondences: a similar model was
recently shown ([8]) to allow for efficient discovery



of linguistically meaningful correspondences
between pairs of languages, even allowing for
selection of rules at different levels of linguistic
granularity. We have not found this feature in
any of the algorithms we reviewed, which focus
on fixed linguistic granularities motivated either
morphologically ([20]) or phonologically ([21, 3]).

6 Conclusion

We studied the problem of automatically
quantifying the amount of structure shared
by sets of languages. We started from
the assumption that if languages are highly
related, then they will share a great deal of
their sequential structure. To capture these
sequential structures, we inferred objective
string-level correspondences of arbitrary size from
cognate tuples for arbitrarily many languages and
leveraged their information-theoretic complexity
and regularity for highly detailed analysis of
linguistic similarity. We introduced an MDL-based
approach and an efficient inference algorithm.

Our experiments show that the approach works
well in practice. In our pairwise experiment, we
constructed a sensible phylogeny for the analyzed
Slavic languages. In our four-way experiment,
we showed that our algorithm quantifies similarity
between groups of languages in a highly detailed
fashion and argued that it is ideally suited
to capture the information-theoretic regularity of
parallel orthographic realizations of cognate words.

We are currently undertaking a large-scale
analysis of the orthographic regularity of the Slavic
languages using our approach. In future work, we
will extend our model to account for morphological
differences information-theoretically and to
accomodate phenomena such as metatheses, in
which sequences of elements may change order.
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