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Abstract

In subgroup discovery, perhaps the most crucial task is to discover
high-quality one-dimensional subgroups, and refinements of these.
For nominal attributes, finding such binary features is relatively
straightforward, as we can consider individual attribute values as
such. For numerical attributes, the task is more challenging as in-
dividual numeric values are not reliable statistics. Instead, we can
consider combinations of adjacent values, i.e. bins. Existing bin-
ning strategies, however, are not tailored for subgroup discovery.
That is, the bins they construct do not necessarily facilitate the dis-
covery of high-quality subgroups, therewith potentially degrading
the mining result.

To address this, we introduce FLEXI. In short, we propose
to use an optimal binning strategy for finding high-quality binary
features for both numeric and ordinal attributes. We instantiate
FLEXI with various quality measures and show how to achieve
efficiency accordingly. Experiments on both synthetic and real-
world data sets show that FLEXI outperforms state of the art with
up to 25 times improvement in subgroup quality.

1 Introduction

Subgroup discovery aims at finding subsets of the data,
called subgroups, that are statistically unusual with respect
to the distribution of target variable(s) [5,7,23]. As such,
it is a branch of supervised with applications in many areas,
including spatial analysis [7], marketing campaign manage-
ment [9], and health care [13].

A crucial part of the subgroup discovery process is the
extraction of high quality binary features out of existing
attributes. By binary features, we mean features whose
values are either true or false. For instance, possible binary
features of Age attribute are Age > 50 and 20 < Age < 30.
These features constitute one-dimensional subgroups or one-
dimensional refinements of subgroups, which are used by
many existing search schemes (e.g. beam search) [2,6,20].

Deriving such features is straightforward for nominal
attributes, e.g. their individual values can be used directly
as binary features [12]. This also is the case for ordinal
attributes if one is to treat them as nominal; the downside
is that their ordinal nature is not used. The task, however,
becomes more challenging for numerical (e.g. real-valued)
attributes. For such an attribute, binary features formed by
single values statistically and empirically are not reliable;
they tend to have low generality. Thus, one usually switches
to combinations of adjacent values, i.e. bins.

To this end, we observe three challenges that are in the
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way of finding high quality bins, i.e. binary features, for sub-
group discovery. First, we need a problem formulation tai-
lored to this purpose. Commonly used binning strategies
such as equal-width and equal-frequency are oblivious of
subgroup quality, impacting quality of the final output. Sec-
ond, we should not place any restriction on the target; be it
univariate or multivariate; nominal, ordinal, or numeric. Ex-
isting solutions also do not address this issue. For instance,
SD [3] used in [5] requires that the target is univariate and
nominal. Likewise, ROC [12] requires a univariate target.
Third, the solution should scale well in order to handle large
data sets. This means that we need new methods that can
handle the first two issues and are efficient.

In this paper, we aim at tackling these challenges. We do
so by proposing FLEXI, for flexible subgroup discovery. In
short, FLEXI formulates the search of binary features per nu-
meric/ordinal attribute as identifying the features with max-
imal average quality. This formulation meets the generality
requirement since it does not make any assumption on the
target. We instantiate FLEXI with various quality measures
and show how to achieve efficiency accordingly. Extensive
experiments on large real-world data sets show that FLEXI
outperforms state of the art, providing up to 25 times im-
provement in terms of subgroup quality. Furthermore, FLEXI
scales very well on large data sets.

The road map of this paper is as follows. In Section 2,
we present preliminaries. In Section 3, we introduce FLEXI.
In Sections 4 and 5, we consider different quality measures
and explain how to efficiently optimise their binnings. In
Section 6, we review related work. We present the experi-
mental results in Section 7. In Section 8 we round up with a
discussion and conclude the paper in Section 9. For readabil-
ity and succinctness, we postpone the proofs for the theorems
to the Appendix.

2 Preliminaries

Let us consider a data set D of size m with attributes
A ={4,,...,A,}, and targets T = {Ty,...,Ty}. Each
attribute A € A can be nominal, ordinal, or numeric. When
A is either nominal or ordinal, its domain dom(A) is the
set of its possible values. Each target 7' € T can be either
numeric or ordinal. If 7; € T is numeric, we assume
that dom(T;) = [v;, V;]. Otherwise, dom(T;) is the set of
possible values of T;. The probability function of T on D is



denoted as p(T).

A subgroup S on D has the form by A. . .Aby, (k € [1,n])
where (1) each b; (j € [1,k]) is a condition imposed on
some attribute A € A and (2) no two conditions share the
same attribute. For each numeric attribute A, each of its
conditions b has the form A € (I, u] where [ € RU {—o0},
u € RU {400}, and I < w. If A is ordinal, b also has the
form A € (I,u] where l,u € dom(A) and [ < u. If Ais
categoric, b instead has the form A = a where a € dom(A).

We let S be the set of all subgroups on D. The sub-
set of D covered by S is denoted as Dg. We write pg(T)
as the probability function of T on Dg. Overall, subgroup
discovery is concerned with detecting S having high excep-
tion in its target distribution. The level of exception can be
expressed through the divergence between pg(T) and p(T).
To achieve high generality — besides the divergence score —
the support s = [Dg| of S should not be too small.

To quantify quality of subgroups, we need quality mea-
sure ¢ : S — R which assigns a score to each subgroup; the
higher the score the better. Typically, ¢ needs to capture both
unusualness of target distribution and subgroup support. In
this paper, we will study five such quality measures.

3 Mining Binary Features

FLEXI mines binary features for an attribute A of either
numeric or ordinal values. When the features serve as one-
dimensional subgroups on the first level of the search lattice,
the entire realisations of A are used. For one-dimensional
refinements, only those realisations covered by the subgroup
in consideration are used [13, 20]. For readability, we
keep our discussion to the first case. The presentation can
straightforwardly be adapted to the second case by switching
from the context of the entire data set D to its subset covered
by the subgroup to be refined. Below we also use bins and
binary features interchangeably.

In a nutshell, FLEXT aims at finding binary features with
maximal average quality. More specifically, it searches for
the binning dsc of A such that the average quality of the
bins formed by dsc is maximal. Formally, let F be the
set of possible binnings on A. For each g € F, we let
{bg, ... b1 be the set of bins formed by g where |g] is
its number of bins. Each bin b}, = (I}, u}] where [} = —oo,

u!(]gl = 400, and I} = ui~" fori € [2,]g|]. FLEXI solves for

lg| ,
dsc = arg Ignea}_( ITII ;:1 o(b,)

Another alternative would be to consider the sum of sub-
group quality. We discuss this option shortly afterwards.
Now, we present FLEXI, our solution to the above problem.
At first, we note that |[F| = O(2™), i.e. the search
space is exponential in m making an exhaustive enumeration
infeasible. Fortunately, it is structured. In particular, for each

A € [1,m] let dsc) be the optimal solution over all binnings
producing A bins on A. Let {b%__,...,b},.} be its bins. We

dsc?
observe that for a fixed value of \,

A—1

> A(bise)

A

Gh X 0buse) = 0lbise) + T
must be maximal. On the other hand, as dsc) is optimal w.r.t.
A b es -, bgs_cl} must be the optimal way to partition
values A < lﬁl‘sc into A — 1 bins. Otherwise, we could
have chosen a better way to do so. This consequently would
produce another binning for all values of A such that (1) this
binning has A bins and (2) it has a total quality higher than
that of dscy. The existence of such a binning contradicts our
assumption on dscy.

Hence, for each A its optimal binning dsc, exhibits

optimal substructure. This motivates us to build a dynamic
programming algorithm to solve our problem.
Algorithmic approach. The pseudo-code of FLEXI is given
as Algorithm 1. In short, it first forms bins {ci,...,cg}
where 8 < m. Each value qual[\][i] where A € [1, 8] and
i € [\ B3] stands for the total quality of bins obtained by
optimally merging (discretising) initial bins cy, ..., c; into
A bins. b[A][¢] contains the resulting bins. Our goal is to
efficiently compute qual[l ... 5][5] and b[1 ... B][5]. To do
so, from Lines 4 to 6 we first compute qual[1][1... /] and
b[1][1...5]. Then from Lines 7 to 14, we incrementally
compute relevant elements of arrays qual and b, using the
recursive relation described in Equation (3.1). This is stan-
dard dynamic programming. Finally, we return the optimal
binning after normalising by the number of bins (Lines 15
and 16). There are two important points to note here.

First, we form initial bins {c1,...,cg} of A. Ideally,
one would start with O(m) bins. However, the quality score
@(c) of bin ¢ is not reliable as well as not meaningful when
its support |¢| = O(1). Thus, by pre-partitioning A in to 3
bins, we ensure that there is sufficient data in each bin for
a statistically reliable assessment of divergence. Choosing a
suitable value for 3 represents a trade-off between accuracy
and efficiency. We empirically study its effect in Section 7.

Second, to ensure efficiency we need an efficient strat-
egy to pre-compute ¢(U;:j ¢k) (used in Lines 5, 9, and 10)
forall 1 < j < i < B. In the next section, we explain
how to do this for different quality measures and analyse the
complexity of FLEXI accordingly.

Alternative setting. An intuitive alternate formulation of the
problem is to maximise the fotal quality of 1-D subgroups
formed on A. Formally, we have dsc = arg Ignezg( % o(bl),
which can also be solved by dynamic programminlg %see the
online Appendix for details). We compare to this setting
in the experiments. We find that our standard setting,

maximising the average score, leads to much better results.



Algorithm 1 FLEXI

Algorithm 2 PRE-COMPUTATION WITH WRAcc

1: Create initial disjoint bins {c1,...,cg} of A

2: Create a double array qual[l...5][1...0]

3: Create an array b[1...S][1...[] to store bins

4: fori =1 — S do

s b[1]fi) = Uy cx and qual[1][i] = ¢(b[1][i])

6: end for

7. for A =2 — S do

8 fori=XA—(do _

o pos=arg max quallA—1][]+ (s cr)
10: qual[A][i] = qual(X — 1)[pos] + ¢(Uy—pos41 k)
11 Copy all bins in b[A — 1][pos] to b[A][7]

12: Add U} pos 41 €k t0 D[N][1]
13:  end for
14: end for

15: \* = arg [nax, + qual[N][B]

16: Return b[\*][f]

Univariate Multivariate
Measure Nom. Ord. Num. Nom. Ord. Num.
WRAcc v v X X X X
z-score X X v X X X
ki v v X v v X
hd v v X v v X
qr X v v X v v

Table 1: Characteristics of quality measures considered in
this paper, i.e. their applicability to univariate and multivari-
ate attributes of resp. nominal, ordinal, and numeric values.

4 Quality Measures

FLEXI works with any quality measure. In this section we
show how to achieve efficiency, i.e. efficiently pre-compute
¢(U;€:j cg) forall 1 < 5 < ¢ < S, with various measures
handling different types of targets. More specifically, we
look at five measures: WRAcc [4, 5, 20], z-score [12], a
measure based on Kullback-Leibler divergence (kl) [20,21],
a measure based on Hellinger distance (hd) [10], and a
measure based on quadratic measure of divergence (qr) [14].
We show characteristics of all measures in Table 1 and
provide their details below. To simplify our analysis, we
assume that each bin ¢; (i € [1, 8]) contains % objects.

41 WRAcc measure Weighted Relative Accuracy
(WRAcc) is a suited measure when D has a single binary
target T'. That is, T" assumes either a positive or a negative
nominal value. Let m be the number of objects in D hav-
ing positive target, i.e. positive label. Consider a subgroup
S having s = |Dg| objects; s of which have positive label.

1: Create an integer array countPos[1...[]
2: fori=1— fgdo

3:  countPosli] = # of objects in D, with positive label

4:  Compute WRAcc(c;) based on countPos|i]

5: end for

6: fori =2 — S do

7. 0 = countPosli]

8: forj=i—1— 1do

9: 6 = 0 + countPoslj]

10: Set # of objects with positive label in | J;,_ jCk to 0
and hence compute WRAcc(Uy—; cx)

11:  end for

12: end for

The WRAcc score of S is defined as

WRAcc(S) = 2 (2 — Z4)

Algorithm 2 shows how to pre-compute WRAcc(|J,,_ ;i Ck)
forall 1 < j <4 < B. The first for loop (Lines 2 to 5)
is to count the number of positively labeled objects of ¢;
(i € [1,B)]) and hence compute its WRAcc score. This
step takes O(m). The nested loop (Lines 6 to 12) is to
incrementally count the number of positively labeled objects
of U._ ; ¢ and hence compute its WRAcc score. This step
takes O(/3%). Thus, Algorithm 2 takes O(m + (?) time.

FLEXI with WRAcc measure (FLEXI,) hence takes
O(m+ B2+ %) = O(m + () time.

4.2 z-score measure The z-score measure is suited when
D has a single numeric target 7. Let o and o be the mean
and standard deviation of 7" in D. Consider a subgroup S
and let u and o be the mean and standard deviation of 7" in
S. The quality of S w.r.t. z-score is defined as
z-score(§) = L2 (= o)

where s = |Dg|. To pre-compute z-score(UZ:j ¢, for all
1 < 5 <4 < B, we can re-use Algorithm 2 with a few
modifications. The new algorithm is in Algorithm 3. It also
takes O(m + 3?).

Hence, FLEXI with z-score measure (FLEXI,) has the
same complexity as FLEXI,,.

4.3 Kkl measure Kullback-Leibler divergence (k) is suited
for D with univariate/multivariate nominal and/or ordinal
targets. W.lLo.g., assume that we have multivariate target

T = {T1,...,T;}. The kI score of each subgroup S is
defined as
F(S) =2 3 pslt,... ta) x log Beft=sta)

t1,..5td



Algorithm 3 PRE-COMPUTATION WITH z-score

1: Create an integer array binMean([1 ... (]
2: fori=1— fgdo
3:  binMean[i] = target mean in ¢;

4:  Compute z-score(c;) based on binMean|i]
5: end for
6: fori =2 — Bdo
7 0= |07‘
8:  p = binMeanli]
9. forj=i—1—1do
10: =0 x pu+lc;| x binMean][j]
11 0 =0+|c
12: Set target mean in | Jj _ ; ¢k to v and hence compute
z-score(Uy.—; cx)
13:  end for
14: end for
where s |IDg|. A straightforward computation of

kl(Ui;:j ci) forevery 1 < j < i < B is done by consid-
ering only (t1,...,t4) that appears in the data covered by
S. This is because ps(t1,...,tq) x log H = 0 for
(t1,...,tq) notin S. As pg(ti,...,tq) and p(t1,...,tq)
can be efficiently calculated using hash tables, computing
MU= ck) takes O((z —Jj+ 1) xdx 'g). The pre-
computation hence in total takes

éi:lO((ijJrl)xdx’g) :

which can be simplified to O(m32d).
Thus, FLEXI with kI (FLEXI}) takes O(mB3%d + 3°) =
O(mfB%d) as B < m time.

4.4 hd measure Similarly to k! measure, Hellinger dis-
tance (hd) is suited for D with univariate/multivariate nom-
inal and/or ordinal targets. The hd score of a subgroup S is
defined as

hd(8) = (=3 log 5 — 5 log "35%)
2
(Vs ta) = Vot )

ti,....ta

where s = |[Dg|. The pre-computation is done similarly to
Section 4.3. However, we here need to consider (1, ..., tq)
that appears in D, not just in S. Thus, for (7, j) where j < ¢,
computing hd(|J;_ ; cx) takes O(md). Hence, the cost of
the pre-computation is identical to that of FLEXI.

In other words, FLEXI with hd measure (FLEXI}, ) has the
same complexity as FLEXI.

4.5 ¢rmeasure To handle univariate/multivariate numeric
and/or ordinal targets, we propose ¢r, a measure based on

ID — a quadratic measure of divergence [14]. We pick ID
as it is applicable to both univariate and multivariate data. In
addition, its computation on empirical data is in closed form
formula, i.e. it is highly suited to exploratory data analysis.
Originally, ID is used for numeric data. Our gr measure
improves over this by adapting ID to ordinal data. This
enables ¢r to handle multivariate numeric targets, as well
as multivariate targets whose types are a mixed of numeric
and ordinal. As shown in Table 1, no previous measure is
able to achieve this. By making ¢r work with FLEXI, we
can further demonstrate the flexibility and generality of our
solution. The details are as follows.

Consider a subgroup S with s = |Dg| objects. W.l.o.g.,
assume that there are multiple targets. The ¢r score of S is

qr(8) = f(s) x ID(ps(T) || p(T))

where f(s) is either - (following [5, 21]) or
(£log £ — M=2]og M=2) (following [2, 10]). ~ When

all targets are numeric, we have ID(pg(T) || p(T)) =

fv‘l/l ...fv‘:d (Ps(tl,...,td) *P(tla

where Ps(.) and P(.) are the cdfs of pg(.) and p(.), respec-

ta)dty - dtg

tively. We extend to ordinal targets by replacing fvv dt; with

>~ for each ordinal T;.
tiedom(T;)

Similarly to ID, our ¢r measure also permits computa-
tion on empirical data in closed form. More specifically, let
the empirical data of D be {D*, ..., D™}. Similarly, let the
empirical data of Dg be {D},..., D%} where s = |Dg].
We write D} and Dy ; as the projections of D' and respec-
tively D}, on T;. We have the following.

THEOREM 4.1. Empirically, gr(ps(T) || p(T)) =

e
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where hy, (z,y) = (Vi — max(z,y)) if Ty, is numeric, and

hi (z,y) = > I(t > max(x,y)) if Tk is ordinal.
tedom(Ty)

Here, 1(.) is an indicator function.

Proof. We postpone the proof to Appendix B.

Following Theorem 4.1, to obtain ¢r(ps(T) || p(T))
we need to compute three terms — referred to as S.eq, S.eq,
and S.e3 — where

ar(ps(T) || p(T)) = F(s)x (L S.er — Z s+ Ly Ses) .



Note that e = S.e3 is independent of .S and thus needs to
be computed only once for all subgroups. We now prove
a property of gr which is important for efficiently pre-
computing qr(UL:j cp)foralll <j<i<g.

LEMMA 4.1. Let S and R be two consecutive non-

overlapping bins of attribute A, i.e. Dg N Dr = 0. Let

Y = SUR, s = |Dg|, and r = |Dg|. It holds that

Y.e; = S.e1 + R.eq + 2int(S,R) and Y.ea = S.es + R.es
s T d

where int(S,R) = > > ] hk(Dg“D%j).

i=1j=1k=1
Proof. We postpone the proof to Appendix B.

Lemma 4.1 tells us that terms e; and es of a bin made
up by joining two adjacent non-overlapping bins S and R can
be obtained from the terms of S and R, and int(S, R). Note
that int is symmetric. Further, we prove that it is additive —
a property that is also important for the pre-computation.

LEMMA 4.2. Let Ry,...,R;, and S be non-overlapping
bins of A such that R; is adjacent to R; 11 fori € [1,1 — 1],
and Ry is adjacent to S. It holds that

l

int (s, U, Ri) = 3 int(S, R;)

i=1
Proof. We postpone the proof to Appendix B.

Algorithm 4 summarises how to compute qr(UZZ ;i Ck)
forall 1 < j <4 < B. The details are as follows.

o First, we compute terms e; and es, and ¢r(c;) for each
i € [1, 8] (Line 1): This step takes O(m X % x d) for
each ¢;, i.e. its total cost is O(m?d).

e Second, we compute int(c;, c;) for each j € [1, 5 — 1]
andi € [j + 1, 8] (Line 2): This step takes O(’g—;d) for
each pair (j, 1), i.e. its total cost is O(m?d).

e Third, we compute mt(U;c_:lJ ¢k, ¢;) foreach i € [2, ]

and j € [1,7 — 1] (Lines 3 to 9): We use the fact that
mt(Uz;lJ Chy Ci) = Zz;lj int(cy, c;) (see Lemma 4.2).
This step takes O(2).

e Fourth, we compute terms e; and e, and qr(Uj’g: ; ck)
foreach i € [2,4] and j € [1,i — 1] (Lines 10 to 14):
From Lemma 4.1, terms e; and e of U;:j ¢, can
be computed based on the terms of Uz;lj Ck, Ci, and

mt(U;;:lj ¢k, ¢;). This step takes O(5?).

Overall, Algorithm 4 takes O(m?d). Thus, FLEXI with
qr (FLEXI,) takes O(m?d + 33) = O(m?d) as 8 < m.

Algorithm 4 PRE-COMPUTATION WITH ¢r

1: Compute terms e; and es, and ¢r(c;) for ¢; (i € [1, B])
2: Compute int(c;,c;) for every j € [1,5 — 1] and ¢ €
j+1,6]

3: fori =2 — S do

4: 0=0

5: forj=i—1—1do

6: 0 =0+ int(cj,c;)

7: Set mt(UZ_:lj Ck,C;) to 6

8:  end for

9: end for

10: fori =2 — S do

11: forj=1—17—1do 4

12: Compute terms e; and es, and qr(UZ:j ¢ci) for

i : i1
Ur—;cx using the terms of (J;_;ck, c;, and

; i—1
Znt(U;c:J Ck, ci)

13:  end for

14: end for

4.6 Remarks As 3 is typically small (from 5 to 40),
FLEXI,,, FLEXI,, FLEXI, and FLEXI;, all scale linearly in m.
On the other hand, FLEXI, scales quadratic in m regardless
which value § takes. In Section 5, we propose a method to
boost the efficiency of FLEXI,.

5 Improving Scalability

The complexity of FLEXI, is quadratic in m, which may
become a disadvantage on large data. We thus propose a
solution to alleviate the issue. Again, we keep our discussion
to the case of one-dimensional subgroups. The case of
refinements straightforwardly follows.

We observe that the performance bottleneck is the pre-
computations of ¢gr(c;) (i € [1,0]) and int(c;,¢;) (j €
[1,5 —1]and i € [j + 1,5]). In fact, keys to these quan-
tities are the distributions p., (T) in bins ¢; (i € [1,5]). In
our computation the data of D, projected onto T, denoted
as D¢, T, is considered to be i.i.d. samples of the (unknown)
pdf p., (T). By definition, i.i.d. samples are obtained by ran-
domly sampling from an infinite population or by randomly
sampling with replacement from a finite population [19]. In
both cases, the distribution of i.i.d. samples are assumed to
be identical to the distribution of the population. This is es-
pecially true when the sample size is very large [18]. Thus,
when m is very large the size of D, T — which is % —isalso
large. This makes the empirical distribution p., (T) formed
by D, T approach the true distribution p,, (T).

Assume now that we randomly draw with replacement
€ x ‘g samples d., v from D, T where e € (0,1). As
mentioned above, d., T contains i.i.d. samples of p, (T) ~
pe; (T). As with any set of i.i.d. samples with a reasonable
size, we can assume that the distribution of T in d., T is



identical to p., (T).

Based on this line of reasoning, when m is large we
propose to randomly sub-sample with replacement the data
ineachbin ¢; (¢ € [1, 5]) for our computation. The important
point here is to identify how large € should be, i.e. how many
samples we should use. We will show that a low value of
€ already suffices, e.g. ¢ = 0.1. If we sub-sample the bins
while not sub-sampling D (in the same way) for computing
quality scores, the complexity of FLEXI, is O(em?d). If we
sub-sample D as well, its complexity is then O(e?m?d).

6 Related Work

Traditionally, subgroup discovery focuses on nominal at-
tributes [4, 6,7,9]. More recent work [2, 11, 13, 20] con-
siders numeric attributes, employing equal-width or equal-
frequency binning to create binary features. These strategies
however do not optimise quality of the features generated,
which consequently affects the final output quality.

To alleviate this, Grosskreutz and Riiping [5] employ
SD [3]. It requires that the target is univariate and nominal.
Further, it finds the bins optimising the divergence between
pp(T) and py (T) where b and b’ are two arbitrary consecu-
tive bins. That is, only local distributions of the target (within
individual bins) are compared to each other. The goal of sub-
group discovery in turn is to assess the divergence between
pp(T) and p(T) [6]. While SD improves over naive binning
methods, it does not directly optimise subgroup quality.

Mampaey et al. [12] introduce ROC, which searches
for the binary feature with highest quality on each nu-
meric/ordinal attribute. It does so by analysing the coverage
space, reminiscent of ROC spaces, of the univariate target.
ROC and FLEXI are different in many aspects. First, ROC is
suitable for univariate targets only. Second, it is designed for
mining one-dimensional refinements of subgroups, and is not
well-suited to find univariate subgroups. Third, it requires
¢ to be convex. FLEXI, on the other hand, works with any
type of quality measure, can discover both high-quality re-
finements as well as one-dimensional subgroups, and works
for both univariate and multivariate targets.

Besides the binning methods discussed above, there
exist also other techniques applicable to — albeit not yet
studied in — subgroup discovery. For instance, UD [8]
mines bins per numeric attribute that best approximate its
true distribution. On the other hand, multivariate binning
techniques (e.g. IPD [14]) focus on optimising the divergence
between local distributions in individual bins. Overall, these
methods do not optimise subgroup quality.

Regarding quality measure ¢, majority of existing ones
focus on univariate targets [4—7,9,11-13,22]. Van Leeuwen
and Knobbe [20,21] propose a measure based on Kullback-
Leibler divergence for multivariate nominal/ordinal targets.
Their measure is reminiscent of k/ measure in Section 4.3;
yet, they assume the targets are statistically independent

Attributes
Data Rows Nom. Ord. Num. Total
Adult 48 842 7 1 6 14
Bike 17379 5 3 7 15
Cover 581012 44 3 7 54
Gesture 9900 1 0 32 33
Letter 20000 1 0 16 16
Bank 45211 11 2 8 21
Naval 11934 0 0 18 18
Network 53413 1 9 14 24
SatImage 6435 1 0 36 37
Drive 58509 1 0 48 49
Turkiye 5820 0 32 1 33
Year 515345 1 0 90 91

Table 2: Characteristics of real-world data sets. We give the
number of rows, the number of resp. nominal, ordinal, and
numeric attributes, and the total number of attributes.

while £l takes into account interaction of targets. Also for
multivariate nominal/ordinal targets, Duivesteijn et al. [2]
introduce a measure based on a Bayesian network. Mea-
sures for multivariate numeric targets appear mainly in ex-
ceptional model mining (EMM) [1, 10]. Consequently, such
measures are model-based. Our gr measure in turn is purely
non-parametric. Recently, we introduced a non-parametric
measure for multivariate numeric targets [16]. Unlike both
this measure and those of EMM, ¢r can handle multivariate
targets whose types are a mixed of numeric and ordinal.

7 Experiments

In this section, we empirically evaluate FLEXI through beam
search — a common search scheme of subgroup discovery [2,
10,20]. We aim at examining if FLEXI is able to efficiently
and effectively discover subgroups of high quality. For
a comprehensive assessment, we test with all five quality
measures discussed above. As performance metric, we use
the average quality of top 50 subgroups. We also study the
parameter setting of FLEXI; this includes the effect of our
scalability improvement for gr measure (see Section 5). We
implemented FLEXI in Java, and make our code available
for research purposes! All experiments were performed
single-threaded on an Intel(R) Core(TM) i7-4600U CPU
with 16GB RAM. We report wall-clock running times.

We compare FLEXI to SUM which finds bins optimis-
ing the sum of quality instead of average quality, EF for
equal-frequency binning, and EW for equal-width binning.
As further baselines, we test with state of the art super-
vised discretisation SD [3], unsupervised univariate discreti-

Thttp://eda.mmci.uni-saarland.de/flexi/



sation UD [8], and unsupervised multivariate discretisation
IPD [14]. For measures that handle univariate targets only
(WRAcc and z-score), we test with UD and exclude IPD.
For the other three measures, we use IPD instead. Finally,
we include ROC [12], state of the art method on mining bi-
nary features for subgroup discovery. For all competitors,
we optimise their parameters and report the best results. For
FLEXI, by default we set the number of initial bins S = 20;
and when subsampling is used, we set the subsampling rate
e = 0.1. We form initial bins {c1,...,c3} by applying
equal-frequency binning; this procedure has also been used
in [14,15,17].

We experiment with 12 real-world data sets drawn from
the UCI Machine Learning Repository. Their details are in
Table 2. To show that FLEXI methods are suited to subgroup
discovery on large-scale data, 9 data sets we pick have more
than 10000 records. For brevity, in the following we present
the results on 6 data sets with largest sizes: Adult, Cover,
Bank, Network, Drive, and Year. For conciseness, we keep
our discussion to FLEXI,,, FLEXI, and FLEXI,.

7.1 Quality results with WRAcc As WRAcc requires
univariate binary target, we follow [13] to convert nominal
(but non-binary) targets to binary. The results are in Tables 3.
Here, we display the absolute as well as relative average
quality (for other measures we show relative quality only).
For the relative quality, the scores of FLEXI,, are the bases
(100%). Going over the results, we see that FLEXI,, gives
the best average quality in all data sets. Its performance
gain over the competitors is up to 300%. Note that by
optimising average subgroup quality, instead of total quality
as SUM does, FLEX1,, mines better binary features and hence
achieves better performance than SUM. EF, EW, SD, and
UD form binary features oblivious of subgroup quality and
perform less well. ROC, on the other hand, performs better,
but as it forms one feature per attribute at each level of the
search it makes the search more sensitive to local optima.

7.2 Quality results with k[ We recall that £/ is suited to
univariate/multivariate nominal and/or ordinal targets. For
Adult and Bank, we use all nominal attributes as targets. For
Cover, we randomly select 27 nominal attributes as targets.
For Network, we combine nominal and ordinal attributes to
create the targets. Drive and Year both have one nominal
attribute and no ordinal one. Thus, for each of them we use
the nominal attribute as univariate target.

The results are in Table 4. FLEXI; achieves the best
performance in all data sets. It yields up to 25 times quality
improvement compared to competing methods. Note that SD
and ROC both require univariate targets and hence are not
applicable to Adult, Cover, Bank, and Network. FLEXI in
turn is suited to both univariate and multivariate targets.

7.3 Quality results with ¢gr We recall that gr is suited
to univariate/multivariate numeric and/or ordinal targets. In
this experiment, we focus on multivariate targets; hence, SD
and ROC are inapplicable. Regarding the setup, for Adult
we combine the ordinal attribute and two randomly selected
numeric attributes to form targets. For Cover, we pick three
ordinal attributes as targets. For Bank, we combine the
two ordinal attributes and two randomly selected numeric
attributes to create targets. For Network, we randomly
sample five ordinal attributes and five numeric attributes to
form targets. For Drive and Year, we randomly pick half of
the numeric attributes as targets.

To avoid runtimes of more than 5 hours on Cover,
Network, Drive, and Year, for a/l methods we subsample
with ¢ = 0.1. Note that with EF, EW, and IPD, we need to
compute subgroup quality after the bins have been formed,
which in total is quadratic to the data size m. That is, for
efficiency subsampling is necessary. For the final subgroups,
we use their actual quality for evaluation. Every reported
quality measurement is the average of 10 independent runs;
standard deviation is small and hence skipped.

The results are in Table 5. We see that FLEXI, outper-
forms all competitors with large margins, improving quality
up to 14 times.

7.4 Efficiency results We here compare the efficiency of
methods that have an advanced way to form binary features;
that is, for fairness we skip EF and EW. The relative runtime
of all remaining methods are shown in Figures 1(a), 1(b),
and 1(c). The results of our methods in each case are the
bases. We observe that we overall are faster than ROC. This
could be attributed to the fact that we form initial bins before
mining actual features. ROC in turn uses the original set of
cut points and hence has a larger search space per attribute.
We can also see that our methods have comparable runtime
to SUM. While in theory SUM is more efficient than our
method, it may unnecessarily form too many binary features
per attribute, which potentially incurs higher runtime for the
whole subgroup discovery process.

7.5 Parameter setting FLEXI has two input parameters:
the number of initial bins 4 and the subsampling rate €. To
assess the sensitivity to (3, we vary it from 5 to 40 with step
size being 5. For sensitivity to €, we vary it from 0.05 to
0.2 with step size being 0.05. The default setting is 5 = 20
and € = 0.1. The results are in Figures 2(a) and 2(b). For
B, we show representative outcome of FLEXI,, and FLEXI
on Adult and Bank. For ¢, we show outcome of FLEXI, on
Network and Drive. We can see that our methods are robust
with regard to how we set the parameters.



Data FLEXI,, SUM EF EW SD UD ROC
Adult 0.08 (100) 0.07 (88) 0.07 (88) 0.07 (88) 0.07 (88) 0.06 (75) 0.07 (88)
Cover 0.12 (100) 0.11 (92) 0.04 (33) 0.08 (66) 0.04 (33) 0.05 (42) 0.04 (33)
Bank 0.04 (100) 0.03 (75) 0.02 (50) 0.03 (75) 0.02 (50) 0.02 (50) 0.02 (50)
Network 0.18 (100) 0.13 (72) 0.10 (56) 0.12 (67) 0.14 (78) 0.12 (67) 0.14 (78)
Drive 0.11 (100) 0.08 (73) 0.03 (27) 0.08 (73) 0.05 (45) 0.06 (55) 0.05 (45)
Year 0.12 (100) 0.08 (67) 0.06 (50) 0.06 (50) 0.07 (58) 0.06 (50) 0.07 (58)

Table 3: [Higher is better] Average quality, measured by WRAcc, of top 50 subgroups. We give both the absolute scores,
as well as the relative results (in brackets) compared to FLEXI,,.
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Figure 1: [Lower is better] Relative runtime with WRAce, kl, and gr. In each case the runtime of FLEXI is the base. SD and
ROC are not applicable to Adult, Cover, Bank, and Network, which is marked by X.

Data FLEXI, SUM EF EW SD IPD ROC Data FLEXI, SUM EF EW IPD
Adult 100 38 37 31 wa 4 n/a  Adult 100 18 7 8 23
Cover 100 43 64 75 wa 45 n/a  Cover 100 60 41 39 53
Bank 100 46 62 33 wa 6 n/a Bank 100 31 47 59 66
Network 100 55 68 55 wa 21 n/a  Network 100 48 69 64 56
Drive 100 42 64 8 89 42 62 Drive 100 62 41 59 66
Year 100 43 45 42 40 42 74 Year 100 26 27 21 55

Table 4: [Higher is better] Average quality, measured by kl,
of top 50 subgroups. The results are relative and the quality
of FLEXI; on each data set is the base (100%).

8 Discussion

The experiments on different quality measures and real-
world data sets show that FLEXI found subgroups of higher
quality than existing methods. In terms of efficiency, it is
on par with SUM and faster than ROC— the state of the art
for mining binary features for subgroup discovery. The good
performance of FLEXI is attributable to 1) taking subgroup
quality into account in binary feature mining, (2) finding
optimal binary features by dynamic programming, and (3)
using subsampling to handle very large data sets.

Yet, there is room for alternative methods as well as

Table 5: [Higher is better] Average quality, measured by qr,
of top 50 subgroups. The results are relative and the quality
of FLEXI, on each data set is the base (100%).

further improvements. For instance, in addition to beam
search it is also interesting to apply FLEXI to other search
paradigms, e.g. MDL-based search [20]. Along this line,
we can also formulate our search problem as mining binary
features with high quality that together effectively compress
the data. Besides the already demonstrated efficiency of our
method, it can be trivially sped up by parallelisation, e.g.
with MapReduce. This direction is applicable to subgroup
discovery in general, and a potential solution to apply this
paradigm on large real-world scenarios.
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Figure 2: Sensitivity to 5 and e. For /3, we show the results
of FLEXI,, and FLEXI; on Adult and Bank. For ¢, we show
the results of FLEXI, on Network and Drive.

9 Conclusion

We studied the problem of mining binary features for sub-
group discovery. This is challenging as one needs a formula-
tion that allows us to identify features leading to the detection
of high quality subgroup. Second, the solution should place
no restrictions on the target. Third, it should permit efficient
computation. To address these issues, we proposed FLEXI. In
short, FLEXI aims at identifying binary features per attribute
with maximal average quality. The formulation of FLEXI is
abstract from the targets and hence suited to any type of tar-
gets. We instantiated FLEXI with five different measures and
showed how to make it efficient in every case. Extensive ex-
periments on various real-world data sets verified that com-
pared to existing methods, FLEXI is able to efficiently detect
subgroups with considerably higher quality.
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Algorithm 5 sSUM

: Create initial disjoint bins {cq, .. .,
: Create a double array qual[l ... (]
: Create an array b[1 . .. 3] whose each entry stores bins
. Set qual[l] = ¢(c1) and b[1] = ¢4
fori=2— 3do .

pos = arg max qual[j] + d(Up—;11 k)

cg}of A

- Y B I R

qualli] = quallpos] + (U1 o)
: Copy all bins in b[pos] to b[i]
9: Add Uj_ s 1k to B[]
10: end for
11: Return b[3]

A Alternative Setting

Here we show that the alternate problem formulation can
also be solved by dynamic programing. More specifically,

‘dscl} be its

let dsc be the optimal solution and {b, ., ..., b

bins. It holds that

|dsc|

Z¢ dsc -

|dsc|—1

Z¢d5c

|dsc|—1
bdsc

|dec\
bdsc

As dsc is optimal, {b}__, .. } must be the optimal

binning for values A < Iy ‘dsc . Otherwise, we could have
chosen a different blnmng for such values that improves
the total quality. This would yield another binning for all
values of A that has a total quality higher than that of dsc,
which contradicts the assumption on dsc. Hence, the optimal
binning dsc also exhibits optimal substructure, permitting
the use of dynamic programming. The detailed solution is
in Algorithm 5.

B Proofs
Proof. [Theorem 4.1] W.l.o.g., we assume that 77,...,7;
are numeric and 7; 1, ..., Ty are ordinal. We have
P(ty,..
1%} vl
/ / S I <)%
vl tHlEdom(THﬂ ta€dom(Ty)
X I(xg <tg) x p(a1,...,xq)dxy - dg.
Similarly, we have
P(t1, ... ta) =
1%} Vi
/ / Z I(.’L’l < tl) X
v tl+1€dom(Tl+1) ta€dom(Tyq)
X I(xg <tg) X ps(x1,...,2q)dxy -+ - dzg.

Using empirical data, we have

1 & ,
P(ty,...,tq EZHI(D;gti), and
i=1 k=1
1 s d
Pg(ty,... tq == [[1D%, <t).
i=1 k=1

Hence, we have

ID(ps(T) || p(T)) =

/V/V 3

tl+1€dom(Tl+1)

Expanding the above term and bringing the integrals inside
the sums, we have

ID(ps(T) || p(T)) =

s s l V.
1 i . .
?ZZ (H/ I(max(D ,, D% ) < tk)dtk> X

i=1j=1 \k

D

ta€dom(Tyq)

S

d m d 2
; 1 .
Y II1Dse <ty ——> I(Dzsu)> dty - - dt;.
i=1 k=1 meT i

[

>

=l+1tpedom(Ty)
s

1
d
k=14
_ Sim ZZ (H/ max ngwDi) < tk)dtk) X
d

I(max(Df 4, D% ;) < tr)

=1 j=1

I >

k=l+1tredom(Ty)

H/ (max(D}, D) < tk)dtk> X

I(max(Dj .. D}) < 1)

1
+WZ

=1 j5=1

I3

k=Il+1t,edom(Ty)

I(max(D}, D)) < t;,)

by which we arrive at the final result.

Proof. [Lemma 4.1] Empirically, we have that
div(psur(T) || p(T))

s+r s+r d
= S+T222Hhk DSURZ7DSUR])
=1 j=1 k=1
s+r m
) 90 | (I W
=1 j=1 k=1

m m d
+ =23 > [T (kDY)



We can see that the first term is equal to

ﬁs.el + (+7)2R er + (+ [CFH int(S,R) where

int(S,R) = ‘ Z H hk(DSl,D’}”) The second term
i=175=1

is equal to (S+2T) S.eo + (S+T)mR €. The third term is in

fact e.

Proof. [Lemma 4.2] By definition, we have that

l
nt <S, U Rl>
i=1

s s1t..ts; d

SO I | O I
Jj=
s d

=33 S T (D, D)

i=1 g=1 j=1 k=1
l

= int(S, R;).
i=1

C Additional Experimental Results

Quality results on all quality measures are in Tables 6, 7, 8,
9, and 10. Note that we show absolute values. As Naval has
neither categorical nor ordinal attributes, it is not applicable
to WRAce, kl, and hd.

Additional efficiency results are in Figures 3(a), 3(b),
and 3(c). Interestingly, on ¢r measure, FLEXI, is even faster
than EW on 3 data sets. Our explanation is similar to the
case of SUM; that is, EW may form unnecessarily many
binary features than required per attribute which prolongs
the runtime.



Data FLEXI,, SUM EF EW SD UD ROC

Adult 0.08 0.07 0.07 0.07 0.07 0.06 0.07
Bike 0.06 0.04 0.04 004 006 0.04 0.05
Cover 0.12 0.11 0.04 0.08 0.04 0.05 0.04
Gesture 0.10 0.08 0.03 0.09 0.07 0.04 0.04
Letter 008 0.05 002 0.03 005 0.04 0.04
Bank 0.04 0.03 0.02 003 002 002 0.02
Network 018 0.13 0.10 0.12 0.14 0.12 0.14
SatImage 0.15 0.11 0.03 0.05 0.09 0.04 0.05
Drive 0.11 0.08 0.03 0.08 0.05 0.06 0.05
Turkiye 011 011 0.10 0.10 0.10 0.10 0.10
Year 0.12 0.08 0.06 0.06 0.07 0.06 0.07
Average 0.10 0.08 0.05 0.07 0.07 0.06 0.06

Table 6: [Higher is better] Average quality, measured by WRAcc, of top 50 subgroups. Best values are in bold.

Data FLEXI, SUM EF EwW UD ROC
Adult 89.44 82.14 82.14 86.04 79.62 8214
Bike 68.61 5044 5754 5024 5625 61.50
Cover 434.97 32843 356.44 24949 288.29 384.48
Gesture 38.09 31.38 3532 3355 3142 44.01
Letter 47.11 4190 4382 3997 40.77 44.17
Bank 7876  69.54 7245 7139 6640 7245
Naval 28.20 23,60 2292 2250 22.61 3225

Network 135.09 129.38 133.60 114.78 11045 14591
SatImage 50.28 3523 3932 4194 3942  44.16

Drive 12033  86.64 69.57 4693 4443  40.80
Turkiye 14.56 9.53 9.53 9.54 7.10 1237
Year 88.57 5759 4793 5350 5040 @ 60.31

Average 99.50 78.82 80.88 6832 69.76  85.38

Table 7: [Higher is better] Average quality, measured by z-score, of top 50 subgroups. Best values are in bold.

Data FLEXI; SUM EF EwW SD IPD ROC
Adult 052 020 0.19 0.16 wa 0.02 n/a
Bike 050 026 034 035 wa 0.05 n/a
Cover 053 023 034 040 wa 024 n/a
Gesture 053 022 033 033 050 031 033
Letter 0.52 043 043 047 043 0.06 043
Bank 052 024 032 0.17 wa 0.03 n/a
Network 053 029 036 029 wa 0.11 n/a
SatImage 0.53 028 037 048 045 026 0.37
Drive 053 022 034 045 047 022 033
Turkiye 0.53 050 050 050 wa 0.15 n/a
Year 053 023 024 022 021 022 0.39
Average 0.52 028 034 035 0.19 0.16 0.17

Table 8: [Higher is better] Average quality, measured by kI, of top 50 subgroups. Best values are in bold.



Data FLEXI; SUM EF EwW SD IPD ROC

Adult 029 026 026 026 wa 022 n/a
Bike 0.27 0.10 0.14 022 wa 025 n/a
Cover 030 030 022 021 na 027 na
Gesture 029 0.08 0.14 030 027 030 0.14
Letter 029 021 021 025 024 025 028
Bank 029 0.13 0.16 023 wa 026 n/
Network 029 022 022 021 wa 025 n/a
Satlmage 029 0.11 0.16 024 023 023 0.17
Drive 029 0.08 0.14 028 029 030 0.14
Turkiye 029 026 026 026 na 026 n/a
Year 029 025 0.12 0.14 0.14 022 0.15
Average 029 0.18 0.18 024 0.11 026 0.08

Table 9: [Higher is better] Average quality, measured by hd, of top 50 subgroups. Best values are in bold.

Data FLEXI, SUM EF EW IPD
Adult 110.35 20.1 819 858 2538
Bike 1.77 049 061 0.69 0.75
Cover 185.72 110.51 76.58 7195  98.52
Gesture 3.25 0.82 1.13 258 2.86
Letter 0.59 035 036 041 0.44
Bank 41.71 13.02 19.60 2454  27.63
Naval 0.57 0.18 021  0.26 0.28

Network 25.72 1237 17.63 1634 14.34
Satlmage 3.57 1.23 2.20 1.94 2.11

Drive 6.37 394 264 376 4.22
Turkiye 1.03 0.8 077 0.83 0.83
Year 27198 69.41 73.07 5595 14943

Average 5439 1944 1692 15.65 27.23

Table 10: [Higher is better] Average quality, measured by gr, of top 50 subgroups. Best values are in bold.
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