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Abstract

We focus on data-driven causal inference. In particular, we propose
a new principle for causal inference based on algorithmic informa-
tion theory, i.e. Kolmogorov complexity. In a nutshell, we deter-
mine how much information one data object gives about the other,
and vice versa, and identify the most likely causal direction by the
strongest direction of information.

To apply this principle in practice, we propose ERGO, an
efficient instantiation for inferring the causal direction between
multivariate real-valued data pairs. ERGO is based on cumulative
and Shannon entropy. Therewith, we do not have to assume
distributions, nor have to restrict the type of correlation. Extensive
empirical evaluation on synthetic, benchmark, and real-world data
shows that ERGO is robust against both noise and dimensionality,
efficient, and outperforms the state of the art by a wide margin.

1 Introduction

Causal inference is concerned with identifying causality.
Loosely speaking, the goal in causal inference is to deter-
mine from empirical data whether X causes Y, or the other
way around, or, whether they are only correlated. Clearly,
causal inference has a broad area of application — science is
all about discovering causes and effects, after all. In biology
and medicine, for example, key questions include “do pills
X cure disease Y7, or, “what are the genes X that cause
phenotype Y ”. Being able to automatically determine cause
and effect is hence one of the holy grails in data mining.
Toward this goal, we propose a causal inference rule
based on Kolmogorov complexity, or, algorithmic informa-
tion theory [8]. In a nutshell, we consider the amount of in-
formation an object X gives about object Y — and vice versa
— and infer causality based on the strongest direction of infor-
mation between these two. Our rule hence closely embraces
the common postulate of causal inference: it is simpler to
explain effect through cause than the other way around [11].
While this has been adopted by a number of recent propos-
als [5,6,18], our approach allows for causal inference regard-
less of correlation type, noise model, and without having to
assume anything about the distribution of the data.
Kolmogorov complexity has very nice theoretical prop-
erties, but due to the halting problem it is sadly not com-
putable [8]. To put our principle to practice, we hence intro-
duce ERGO, an efficient instantiation for inferring the causal
direction between pairs of real-valued data — multivariate
or univariate — measuring the direction of information by a
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combination of cumulative and Shannon entropy.

Most research effort on causal analysis considers pairs
of univariate variables, and is aimed at inferring whether
X causes Y, or vice versa, from the joint observations
of (X,Y) under the assumption that there are no hidden
confounders [6, 19, 24]. Recently, there has been more
focus on inferring the causal direction between multivariate
random variables [1, 4, 26]. These methods only consider
linear and invertible functional correlations. Further, they
require both X and Y to be strictly multivariate. Last, but not
least, non-linear functional correlation analysis techniques
are computationally expensive, and hence not suited for large
data. ERGO alleviates each and every of these points.

Extensive empirical evaluation on synthetic, bench-
mark, and real-world data shows that by considering the
complexity of both the data and the model, ERGO out-
performs the state of the art by a wide margin. It is
highly resilient to noise and dimensionality, and can han-
dle both univariate and multivariate variables, as well as
non-deterministic, complex, and non-invertible correlations.
Moreover, it is very efficient, permitting usage on large data.

In summary, our contributions include a new algorith-
mic information theoretic principle for causal inference be-
tween arbitrary objects, a practical instantiation based on cu-
mulative and Shannon entropy, and a method for efficiently
inferring the causal direction between two real-valued ran-
dom variables X and Y without having to make any assump-
tion on their relationship or distribution.

The paper is organised as usual. We introduce our
theory for causal inference in Sec. 2, and its entropy-based
instantiation in Sec. 3. The details for ERGO, its efficient
implementation are in Sec. 4. Sec. 5 discusses related
work. We empirically evaluate in Sec. 6, and round up with
discussion and conclusions in Sec. 7 and 8. For conciseness
we postpone the proofs to the online Appendix.

2 Causal Inference by Algorithmic Information Theory

Consider two objects X and Y that we know to be correlated
— as identified by e.g. a domain expert or an appropriate test.
Our goal is to infer the causal relationship between X and
Y. We assume there are no hidden confounders, there is no
hidden Z causing both X and Y. That is, we assume causal
sufficiency. Hence, our decision comes down to determining
which of X — Y and Y — X is most plausible [11].



Loosely speaking, we will derive a rule for causal
inference that calls X to be more likely to cause Y than vice
versa, when the data Y is more easily described knowing X
than vice versa — that is, when X provides relatively more
information about Y than the other way around.

2.1 Kolmogorov Complexity We base our inference rule
on algorithmic information theoretic principles, using Kol-
mogorov complexity as the main foundation. The key aspect
of Kolmogorov complexity [8], as well as that of its practical
implementations Minimum Description Length (MDL) [14]
and Minimum Message Length (MML) [23], is perhaps best
captured by the slogan Induction by Compression.

Given a finite binary string s, its Kolmogorov complex-
ity K (s) is defined as the length of the shortest program
s* for a universal Turing machine ¢/ that generates s and
halts [8]. That is, K (s) = I(s*). Intuitively, s* is the most
succinct algorithmic description of s. To derive our infer-
ence rule, we will need conditional Kolmogorov complexity,
K (s | t), the length of the shortest program s* that given the
information in ¢ ‘for free’ generates s, and then halts.

In fact, s* can be split such that the true structure of
the data is separated from meaningless noise [21]. The main
idea is as follows. Let S be a set of strings containing s.
Foundational to information theory is that given a set of
objects, and without any further information, all elements
are equally likely to be chosen. The most efficient way to
identify s from .S is hence by an index, i.e. K(s | S) =
log |S| + O(1) bits. Let K(.S) be the length of the shortest
program that generates S, and then halts. Now,

K(s) = K(S)+1og|S|+0(1)

identifies the best model S for s as the most easily described
set of strings S for which s is a typical element. This means
that all structure in s that can algorithmically described
succinctly is captured by K (.S) — including the form of the
noise, e.g. Gaussian. Written more intuitively, with equality
up to a constant, we have [21]

2.1 K(B)2K(s)+K(s|s)

where K (s') is the length in bits of the structure in s — the
part of s that can be described succinctly algorithmically —
and K(s | §') is the randomness of s — the length in bits
we need to reach s given the modelled data s’. This two-
part definition of Kolmogorov complexity is the foundation
of two-part MDL [21]. Here we use if for causal inference.

2.2 Causal Inference by Direction of Information We
will now develop our causal inference rule using Kol-
mogorov complexity. For readability, in the remainder we
will refer to objects X and Y as the input data, rather than
string s. Note that the complexity of X is equivalent to that
of string s up to the constant cost of serialising X into s.

For completeness, let us define the two-part decomposi-
tion of K (X) using Eq. 2.1 as

22 K(X) £ K(X')+K(X|X)

such that K (X') is the cost for X', the compressible part of
X, and K (X | X') the cost of the incompressible part of X.
Similarly, Y’ is the compressible part of Y.

A cornerstone postulate in causal inference states that,
if X causes Y, describing Y using X will be simpler than
the other way around [11]. This makes sense from an
algorithmic information theoretic perspective. That is, if X
causes Y, X will provide more information about Y than
vice versa. To use this for causal inference we need to
measure the amount of information that X provides towards
most succinctly describing Y, and vice versa. That is, we
need to be able to infer the strongest direction of information
between the two objects.

In terms of Kolmogorov complexity, when X causes Y
we expect K(Y | X) < K(X | Y) as intuitively it will
require a much simpler algorithm to generate Y knowing
X, than vice versa. This, however, assumes that the process
generating X directly caused Y, and that no noise was added
to either after this causal influence. Clearly, it is more
general to assume that the process generating X’ causes Y’
and that we only observe the noise-distorted objects X and
Y. For this subtly different, and more general process, we
expect K(Y | X') < K(X | Y’') as then we measure
the information provided by the models X’ and Y, the best
generalisations of X and Y, and ignore noise (randomness)
that may be present in the observed data.

When conditioning Eq. 2.2, we have

23) KY|X)Y2KY' |X)Y+KY|X)Y) ,

where the first term is the complexity of Y’, the optimal
model for Y, given the optimal model for X. The second
term measures the complexity of Y given both models.

In practice, X and Y may be of different complexities.
Inferring causal direction based on the absolute difference
between K(Y | X’) and K(X | Y’) would hence be biased
towards the simplest object. To more reliably identify the
direction of information we therefore normalise, and instead
consider the difference in relative conditional complexity.
We define the relative amount of directed information as

KY | X))+ K(Y | XY

2.4) Axy = KY) ;

defining Ay _,x analogously. Eq. 2.4 takes a value of 1
when X’ does not provide any information about Y and
(close to) 0 when X’ identifies Y non-deterministically. If
Ax sy < Ay _.x, X’ provides more information than Y,
and by the direction of information we infer that it is more
plausible that X caused Y than vice versa. Alternatively,
when Ay _,x < Ax_,v,weinfer Y — X.



By using algorithmic information theory as our founda-
tion we only need to consider data objects — there is not a
distribution in sight. This also means we can determine the
most likely causal direction between arbitrary objects and
not restricted to series of observations. The most important
observation to make, however, is that to make reliable infer-
ences we have to take both the complexity of the model and
that of the data under the model into account.

3 Causal Inference by Entropy over Data and Model

Kolmogorov complexity provides strong theoretical founda-
tions, but, it is not computable and hence not practical. We
can, however, approximate it from above by compression [8].
Here, we will do so by cumulative and Shannon entropy.
More in particular, instead of objects in general we
consider real-valued random-variables X and Y with the
goal to determine whether X — Y, or Y — X. To
calculate the direction of information, we will approximate
the complexity of the data we have over these variables,
X and Y, using cumulative entropy [3]. To calculate
conditional entropy we have to perform estimation, i.e. we
have to model. For calculating the complexity of these
models, X’ and Y’, we will use Shannon entropy [2].

3.1 Notation Throughout the remainder, we consider a k-
dimensional random variables X = {X3,..., X} and I-
dimensional random variables Y = {Y7,...,Y;} where each
X; and each Y are real-valued. We write X to denote the
data we have for X. If we have collected n observations X
represents the n-by-k data matrix of X. Similarly, we use X;
for the data over variable X;, and analogue, slightly abusing
notation, we say X = {Xy,...,Xy}.

We write p(X) for the probability density function (pdf)
of X. We write p(z) as a short form for p(X = z).
We define p(Y") similarly. We assume that the domain of
X; € X is [min(X;), maz(X;)]. Considering a univariate
random variable X, we write the cumulative distribution
function (cdf) of X as P(X), with P(x) as the short form
of P(X < z). All logarithms are to base 2, and we adopt the
usual convention of 0log 0 = 0.

3.2 Cumulative Entropy Loosely speaking, cumulative
entropy [3] captures the information content, i.e. complexity,
of a probability distribution. However, different from Shan-
non entropy, it works with (conditional) cdfs, and can be re-
garded as a substitute for Shannon entropy for real-valued
data. The cumulative entropy of a real-valued univariate ran-
dom variable X, denoted as h(X), is given as

h(X) = — [ P(z)log P(z)dx

The conditional cumulative entropy of a real-valued univari-
ate random variable X given Z € R is defined as [3]

(35  Ez[MX | 2)] = [MX | 2)p(2)dz

It has two properties that are of particular importance to us.

THEOREM 3.1. h(X | Z) > 0 with equality iff X is a
Sunction of Z. h(X | Z) < h(X) with equality iff X is
statistically independent of Z.

Proof.: We postpone the proof to the online Appendix.

Even more importantly, unconditional cumulative entropy
can be computed in closed-form for empirical data. Let
r <...< z, be the ordered records of X. We have

n—1

hMX) = (i1 — ;)% log &

i=1
When Z is discrete valued, computing the conditional cu-
mulative entropy is equally straightforward. It imply is the
weighted sum of cumulative entropies over X for every

z € Z. Let (z1,2) < ... < (@, 2) be the m records for
which Z = z ordered by value of X. We then have

WX | 2) = EZZ’%(X | 2)p(2)

When Z is continuous real-valued and the probability den-
sity function p(Z) is unavailable, we need estimation. We
will return to this in Section 4.

3.3 Entropy-based Direction of Information We will
now proceed to define a practical version of Eq. 2.4 for
real-valued data. First we propose how to approximate
K(Y | X, YY) resp. K(Y’ | X'), and then the discuss
the normalisation term. Finally, we construct the practical
inference rule and discuss its properties.

Complexity of the Data We will use cumulative entropy
to approximate K (Y | X', Y’), the conditional complexity
of the data. Cumulative entropy, however, is only defined
for single univariate random variables whereas Y may be
multivariate. We therefore apply a chain rule. That is,
we factorise p(Y | X) into p(Y; | X), p(Y2 | X, Y1),
. p(Yr | X,Y1,...,Y,_1). We can now quantify the
complexity of p(Y; | -) using h(Y; | -).

To compute h(Y; | -) we require the pdf over the condi-
tioning terms, e.g. p(Y’) and p(X). These are unavailable in
practice and will need to be estimated. Postponing the details
to Sec. 4, we will do so using density estimation. This pro-
vides discrete models X’ and Y. For readability we slightly
abuse notation, and write A(Y) and h(Y | X') for resp.
h(Y) and h(Y | X) over real-valued Y and discrete X'.

There exist ! factorisations of p(Y | X), raising the
question which one to use. To approximate K (-) we define

1http://eda.mmci.unifsaarland.de/ergo/



h(Y | -) as the minimum entropy over all factorisations. Let
oy denote a permutation of the attributes of Y. We then have

(3.6) MY |X')=
win h(Yo, 1) [ X) +2(Yoy ) | X' Y0, 1))
Yo o)

We postpone the details for how to compute, or rather,
approximate the oy that minimises Eq. 3.6 to Sec. 4. For
normalisation, it is good to know we have an upper bound.

4+ h(Yoy(l) | X'/7Y(,Ty(1)7 -

LEMMA 3.1. It holds that h(Y | X') < h(Y).

Proof. We postpone the proof to the online Appendix.

Complexity of the Model Approximating the conditional
complexity of the model is more straightforward. Under
the assumption that X causes Y, estimating p(X) and p(Y")
yields an estimation px_,y (X,Y) of p(X,Y). Let X’ and
Y’ be the discrete models of data X and Y as induced by
this estimation. Given that X’ and Y are discrete, their joint
Shannon entropy H(X’,Y’) corresponds to the complexity
of px—y(X,Y), which here therefore provides a natural
approximation of K (Y’ | X').

Normalisation So far we have h(Y | X') + H(X',Y’) as
a practical approximation of Eq. 2.3. It can be interpreted as
the average number of bits needed to describe an observation
under the assumption X — Y. In Eq. 2.4, we can use
K(Y) to normalise, as it is a natural, single, and tight
upper bound for K(Y | X’). In our practical setting we
are not so lucky and will need to define upper bounds h"
and H" ourselves. There are many options to this end. A
straightforward solution follows from h(Y | Y',X') <
Y | Y')and HX',Y') < H(X’) + H(Y’). With our
estimation scheme, these do not work well for univariate X
or Y. Instead, we therefore define H" and h" alternatively.
First, we observe

l
WY [ X)) Sh(Y) <Y WY

where h(Y;) can be calculated directly. This gives us a
natural upper bound for A(Y | X’) in the form of

To obtain a practical upper bound for H (X', Y’), we
first factorise it into the independence model, H* (X', Y') =
H*(X') + H*(Y'). Analogue to above, we could use
H(-) to instantiate the two terms. Preliminary experiments
showed, however, that this does not work well in practice.

Hence, instead we use that the uniform distribution has the
largest Shannon entropy. That is, for discrete data X' =
{X{,..., X}, with |X!| the number of bins of X/,

l
H(X') < log(1X)

We use this to define an upper bound, H"(X’), for the
complexity of the discrete (modelled) data X' as

l
HY(X') = Y log(1X))

and similar for H*(Y"). If all components of X and Y have
only one bin, by convention we say % =0.

It is easy to see that A" and H" are not equally tight
upper bounds. This would mean that when we normalise
Y | XY+ HX',Y') by h*(Y | X') + HY(X',Y') we
introduce a bias that depends on this relative tightness. To
avoid this, we will normalise both terms separately.

Determining the Direction of Information With the
above, we can now define our practical entropy-based ap-
proximation of Eq. 2.4. We define the relative amount of
directed information of real-valued X — Y as

(3 7) A _ 1 h’(Y ‘ X/’Y/) H(X'/)Y/)
' XY T o \ (Y [ X,Y) T HY (X, YY)

and analogue for Ay_, x. As above, if Ax_,y < Ay_,x,
we infer by direction of information that X — Y is more
plausible. If Ay . x < Ax_.y, we infer that Y — X.

It is important to note that we do not make any assump-
tion on the distribution of, or the type of correlation between,
X and Y, and neither on the presence, or form, of noise.

A natural interpretation of Ax .,y is that it measures
the divergence between causal determinacy X — Y and
independence X Il Y. That is, analogue to Eq. 2.4,
the lower the value of Eq. 3.7, the stronger the causal
relationship, and the closer to its maximum, 1, the weaker.

4 ERGO - Causal Inference by Direction of Information

Next we give the implementation details of ERGO? for effi-
ciently calculating the relative amount of directed informa-
tion. In particular, we explain our design choices on how to
approximate the minimal entropy factorisation, how to es-
timate conditional cumulative entropy, and how to increase
scalability. Finally, we discuss its time complexity.

4.1 Minimal Entropy Factorisations As detailed above,
for computing ~(Y | X’) we need the permutation oy of

Y that minimises the conditional cumulative entropy. First,

2ERGO is Latin for therefore, consequently.



however, we need X’ — the modelled, discretised version of
X such that we can calculate the conditional entropy of Y
per bin of X’. Computing X’ happens to be equivalent to
computing h(X), i.e., searching for the permutation ox of
X with minimal cost.

To identify the minimal entropy factorisation of X, we
would have to exhaustively consider all k! permutations.
This will be infeasible for high-dimensional data. We there-
fore propose a greedy solution that approximates o%. Let
ox (1) denote the i*" element of permutation ox of X. For
readability, wherever clear from context we do not identify
the attribute and simply write o (¢). For ox, we first select
o(1) such that X,y has minimal cumulative entropy, i.e.
we have o(1) = argmin; h(X;). We then choose ¢(2) such
that h(X,(2) | X;(l)) is minimal, and proceed until every
dimension of X has been selected. We consider the permuta-
tion o x where dimensions are picked to be the approximate
optimal permutation of X.

We compute h(Y | X’) analogue. That is, we choose
oy such that h(Y (1) | X') is minimal, then choose o(2)
such that A(Yy(2) | X', Y/ ) is minimal, and again pro-
ceed until every dimension of Y have been considered. We
denote this permutation by oy and consider it the approxi-
mate minimum entropy permutation of Y.

Note that Yg(l), the last chosen dimension of Y, does
not have to be discretised. Its model complexity is there-
fore minimal, ie. H(Y,q) = 0, by which we have
H(X,Y') = HX, Y\ {Y,)}):

4.2 Estimating Conditional Cumulative Entropy We
combine the estimation of conditional cumulative entropy
with our algorithm for selecting the permutations of X and
Y. For illustration purposes, we first consider i (X). That is,
after selecting X,(1), we calculate h(X; | X[ (1)) for every
dimension X; not yet discretised such that h(X; | X/, (1)) is
minimal; we select dimension X; with minimum entropy.

At every subsequent step, we only discretise the dimen-
sion picked in the previous step. That is, we do not re-
discretise any earlier chosen dimensions. First and foremost,
this increases the efficiency of the algorithm. Second, and
more importantly, it allows us to measure the model com-
plexity in a straightforward manner — we only have to con-
sider one discretisation per dimension.

Next, we show that the discretisation at a step can be
done efficiently and optimally by dynamic programming.
For exposition, let us consider X. Let X’ C X be the set
of dimensions from X already picked and discretised. We
denote X, as the dimension picked in the previous step but
not yet discretised. Consider X, € X \ (X' U{X,}) asa
candidate dimension to be picked next, i.e. for which we will
have to discretise X, into X, such that o(X, | X" U {X}})
is minimal. Further, letzq < ... < x,, be realisations of X,.
We write x; ,, for {z;, z;11,...,2,} where j < u. Slightly

abusing notation, whenever we consider all data points, i.e.
x1,, we simply write X,. We use h(X. | X', (x;.)) to
denote h(X. | X') computed using the (u — j + 1) points
of X corresponding to x; to x,, projected onto X,. For
1 <l <wu<n,we write
f(u,l) = min h(X.| X', 2{,)
g:lgl=l ’
where ¢ is a discretisation of z1,, |g| is its number of
bins, and z{ , is the discretised version of z;, by g. For
1 <l <wu <n,wehave
min

JEN—1,u

‘Aj = %f(.]al - 1) + %h(Xc ‘ Xla <xj+1,u>)'
Proof. We postpone the proof to the online Appendix.

THEOREM 4.1. f(u,l) = )Aj where

Theorem 4.1 shows that the optimal discretisation of
%1, can be derived from that of z; ; with j < u. This allows
us to find the discretisation of X, that minimises h(X. |
X', X,) by dynamic programming. We note that we have
to impose a maximum number of bins on all discretisation
g considered. This is because in the extreme case when all
realisations of X, are distinct and |g| = n, h(X. | X', X,)
will be zero. Therefore, following [13], we impose the
restriction that |g| < n° where € € (0, 1).

The computation of h(Y | X’) is done analogously.
A small difference is that when searching for Y,y we
concurrently seek the discretisation of X/ (k)" Note that, as
mentioned above, after processing all dimensions of Y, all
but Y, (;) are discretised.

Alternatively, kernel methods can be used to estimate
densities [15]. Our strategy to approximate minimal condi-
tional entropy automatically provides a good dimension per-
mutation — plus, we do not have to choose a kernel.

4.3 Increasing Scalability To identify the optimal dis-
cretisation of a dimension using dynamic programming
and the data points as cut points would result in a time-
complexity of O(n®). Most cut-points, however will not
be used in the optimal discretisation. To gain efficiency, we
can hence impose a maximum grid size maz_grid = n® and
limit the number of cut points to ¢ x maz _grid with ¢ > 1. To
find these candidate cut points, we follow Reshef et al. [13]
and apply equal-frequency binning per dimension with the
number of bins equal to (¢ x maz_grid + 1).

4.4 Complexity Analysis The larger we choose € and c,
the more candidate discretisations we consider, and hence at
the expense of additional computation the better its result.
Preliminary empirical analysis shows that ¢ = 0.3 and
¢ = 10 offers a good balance between quality and efficiency.

This makes the cost of discretising a single dimension
O(n). Therewith, the overall complexity of computing
AX%Y and AY%X is O((k2 + ZQ) . n)



5 Related Work

Traditional causal inference methods [11] rely on conditional
independence tests and hence require at least three observed
random variables; they are not designed to infer the causal
direction for just two observed random variables.

The existing algorithmic information-theoretic approach
to causal inference [6, 7] postulates that X — Y is only
acceptable if p(X) and p(Y | X) are algorithmically in-
dependent, i.e. when the shortest description of p(X,Y) is
given by separate descriptions of p(X) and p(Y | X). Kol-
mogorov complexity, however, is defined over data, not over
distributions [8]. One can argue that K (p(X)) corresponds
to model complexity K (X’), and that by considering only
model complexity, the problem of information symmetry,
K(X)+ K(Y |X)=K(Y)+ K(X|Y)[8], is avoided.
This assumes, however, that the relative complexity of the
data under the model is neglible. That is, access to the
true distributions. When the amount of empirical data ap-
proaches infinity, p(-) can be estimated with arbitrarily high
accuracy [17]. That is, there will be no difference in the
complexities of the estimated joint probabilities for X — Y
and Y — X. In practice, however, sample sizes are finite,
and generic (conditional) pdfs are hard to estimate. Con-
sequently, the complexity of the estimated joint probability
Dx -y (X,Y) will often be non-negligible, and we need to
take this into account for reliable inference of causal direc-
tion. Our inference principle does take this complexity ex-
plicitly into account as we consider the complexities of both
the model and of the data under the model.

As Kolmogorov complexity is not computable, frame-
works as these require practical implementations. Janz-
ing et al. [5] consider information-geometry to detect
(in)dependencies between p(X) and p(Y | X) for deter-
ministically related univariate X and Y. Earlier [4, 26],
they considered covariance matrices to detect linear relations
Y = A x X + E between multivariate variables. Chen et
al. [1] allow non-linear correlations, yet require correlations
to be deterministic, functional, and invertible.

Causal inference based on the additive noise model
(ANM) [12,16] postulates that if Y = f(X)+ E with X the
cause, Y the effect, and F an additive error term statistically
independent of X, that there typically does not exist an addi-
tive noise model for the opposite direction. [24] generalised
this to a post-nonlinear model. The intuition of both can be
justified by the above algorithmic information-theoretic ap-
proach, in particular the algorithmic independence postulate.

Cumulative entropy was proposed in [3]. Earlier, we
used it for non-parametric (non-)linear correlation analy-
sis [9, 10]. To the best of our knowledge, we are the first
to use it for causal inference.

It is important to point out that unlike any of the above,
our framework only considers data, and does not require
assumptions on either distribution, noise, or correlation.

Method Univariate Multivariate
ERGO v v
GPI [18] v —
IGCI [5] v —
LTR [4] — v
KTR [1] — v

Table 1: Characteristics of casual inference methods. (v)
means it can consider data of that type, (—) means it cannot.

6 Experiments

Next, we empirically evaluate ERGO with respect to inferring
correct causal directions. We will compare the performance
of ERGO to LTR [4], KTR [1], GPI [18], and IGCI [5].
LTR and KTR are state of the art for causal inference for
multivariate pairs, while GPI and IGCT are state of the art for
univariate pairs. Table 1 summarises their characteristics.
We implemented ERGO in Java. We use € = 0.3 and ¢ = 10
for all experiments. All experiments were conducted on an
Intel i5-2500K Windows machine with 16GB RAM.

6.1 Causal Inference for Univariate Pairs We first eval-
uate ERGO on a benchmark set of cause-effect pairs with
known ground truth [25]. We compare to GPI [18] and
IGCI [5], two state of the art methods for univariate pairs.
We consider 75 pairs from various domains. All of them
are noisy, i.e. the relationship between each pair is non-
deterministic. We find that ERGO infers the correct causal di-
rection with an accuracy of 74.7%, outperforming both 1GCI
(69.3%) and GPI (61.3%) with a margin. It is reassuring to
note that for correctly inferred pairs the difference between
Ax_,y and Ay _, x differ more (0.1 on average) than when
ERGO draws the wrong conclusion (0.05).

6.2 Causal Inference for Multivariate Pairs Second,
we evaluate ERGO on real-world benchmark data where
X and/or Y are multivariate. = We consider nine non-
deterministic data pairs for which the causal direction is
known. We give the base statistics in Table 2. The first five
are drawn from [25], the others from [4]. In the interest of
space we refer to the original papers for their descriptions.

We compare against LTR [4] and KTR [1], two causal
inference methods for the multivariate setting. LTR assumes
the correlation between X and Y to be linear. KTR relaxes
this requirement but explicitly requires the relationship to be
deterministic (no noise), functional, and invertible.

We summarise the results in Table 2. As LTR and KTR
require both X and Y to be multivariate they are hence
inapplicable on the ozone concentration problem. Inspecting
the results, we find that LTR and KTR obtain an accuracy of
50%. In comparison, ERGO is accurate in 78% of the cases.



Data n k I ERGO LTR KTR
Symptoms 120 6 2 v v v
Climate forecast 10266 4 4 v v —
Radiation 72 16 16 v — v
Ozone 989 1 3 v (n/a)  (n/a)
Car efficiency 392 3 2 - — v
Precipitation 4748 3 12 v v —
7 Stock indices 2394 4 3 v — v
9 Stock indices 2394 6 3 v - -
Pollution 1440 3 6 — v —

Table 2: ERGO is accurate Results on multivariate cause-
effect pairs with known ground truth. (v') means the correct
causal direction is inferred, and (—) otherwise. (n/a) means
the respective method is inapplicable to the given pair.

6.3 Robustness and Scalability Finally, we evaluate
ERGO with regard to robustness and scalability. To this
end we consider synthetic data with known complex non-
deterministic causal relations as ground truth. To this end,
we first generate multivariate Xpx1 = Agxr X Zrx1 Where
zi ~ Gaussian(0,1) and a;; ~ Uniform[0,1]. Then,
using a function f that describes the relation between X
and Y we generate Y, 1 with y; = f(u;) + e; where
U;x1 = Bixr X X1 with bij ~ Uniform[0,0.S], and
e; ~ Gaussian(0,0) with o a free parameter. Through o
we can control the level of noise. For 0 = 0 the relation-
ship is deterministic, while larger values correspond to more
noise. We use three non-linear, complex, and non-invertible
instantiations of f, i.e.

fi(z) tanh(2z) + tanh(3z 4+ 1) 4 tanh(4a + 2)
fo(z) = sin(2z) +sin(3z +1)
fa(x) = sin(2z) +sin(3z+ 1) +

% (tanh(2z) + tanh(3z + 1) + tanh(4z + 2))

As competitors we again consider LTR [4] and KTR [1]. Per
experiment, we generate 100 data sets per function, and for
every data set we infer the causal direction per method.

Robustness to Complexity We first evaluate robustness
against functional complexity and data dimensionality. We
set k = [ and vary it between 5 to 120. We fix n = 1000
and use ¢ = 0.5. We show the average accuracy, the
relative number of correct inferences, in Figure 1. We see
that ERGO performs very well, obtaining 100% accuracy for
every setting. In comparison, LTR and KTR show almost
as good scores for fi. For fs, however, their performance
decays to approx. 60%, while for the most complex function
(f3) these methods most often indicate the wrong direction.

Robustness to Noise Next, we evaluate robustness against
noise. Following Janzing et al. [4], we vary ¢ from 0 to 2. We
fix n = 1000 and k¥ = [ = 5. For brevity we only discuss
the results on f;. We show the results in Figure 2(a). We
see that for (near) deterministic relations (6 = 0 and 0.5)
all three methods make perfect inferences. For the higher
levels of noise we see that ERGO is clearly the most robust,
outperforming both LTR and KTR at a fair margin.

Scalability As last experiment on this data we investigate
scalability. We consider two scenarios. First, we set ¢ = 0.5
and k = [ = 5, varying n from 1 000 to 15000. Second, we
keep n = 1000 and o = 0.5, while varying k¥ = [ from 5 to
120. We give the results in Fig. 2(b) resp. Fig. 2(c). We find
that ERGO scales linearly to data size and quadratically to
dimensionality. This agrees with our analysis in Section 4.4.
We observe that ERGO scales better than KTR but worse than
LTR. Taking into account performance, we find that ERGO
yields a good balance between quality and efficiency. As it
scales linearly to data size it is applicable to large data sets.

6.4 Causal Discovery in Real-World Data Last, we con-
sider the discovery of causal relations in non-benchmark
data. To this end, we consider a noisy real-world data set
on insurances [20]. It consists of 9000 user profiles over
86 dimensions, viz. income, education, social class, number
and average price per insurance policy type, etc. The data is
known to be rather noisy, and hence difficult to analyse [20].

To mine correlated dimensions we use MAC [9], a non-
parametric method for discovering (non-)linear correlations.
Next, we apply ERGO and 1GCI [5] on the 120 discovered
pairs to determine their most likely causal direction.

Inspecting the results, we find that both methods identify
sensible causal relations. Overall, the inferences by ERGO
correspond to intuition more often — probably as, unlike IGCT
assumes, the relations between X and Y are not determin-
istic. Examples of causal directions correctly identified by
ERGO, but not by 1GCT, include the following

e # of Roman Catholic family members —
# of married couples in the family
as Ax_,y =0.82< Ay_,x = 0.89

o # of family members with high education —
# of family members with high status
asAx_,y =085 < Ay_,x =0.88

e average income of the whole family —
# of home owners
as AX—)Y =087< Ay_>X =0.92

o # of family members with low education —
# of unskilled workers in the family
asAx_,y =0.88 < Ay_,x =0.92
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Figure 2: ERGO is noise-resistant and scalable Accuracy vs. noise (by varying o), runtime vs. data size, and runtime vs.

dimensionality. (vertical axes in log-scale).

o # of unskilled workers in the family —
# of members with low income in the family
asAx_,y =0.87T< Ay_,x =0.93

Although far from a comprehensive analysis, these results
show that ERGO can indeed be used to discover meaningful
causal relations from noisy real-world data. Developing
algorithms that can efficiently discover the partitioning of a
correlated multivariate Z into X and Y such that A x_,y is
minimal will make for engaging future work.

7 Discussion

The experiments clearly show that ERGO performs well
in practice. It yields high accuracies for both univariate
and multivariate data, is robust against dimensionality, and
performance is particularly promising with regard to noise.
The results of ERGO corroborate that the relative complexity
of the data under the model is indeed important to reliably
determine the direction of information.

Despite these encouraging results, causal inference is
not solved with ERGO. For example, we currently compute
the complexity of pdfs by means of cumulative entropy. Our
estimation scheme clearly allows room for improvement; we
currently greedily construct a Markov-chain — allowing more

degrees of freedom in choosing the ‘parent’ node will likely
improve estimation. Fursther, instead of cumulative entropy,
one could use Shannon entropy as long as there is a reliable
estimation schemes with good justifications.

In addition, while in the Kolmogorov case K(Y) pro-
vides the ideal single normalisation term, in ERGO we have
to employ two tailored normalisation terms. More detailed
characterisation of the complexity scores will likely identify
better a normalisation scheme. Alternatively, one could per-
ceive the normalisation as a weighting scheme and adjust the
weights accordingly to fit the underlying application domain.

Further, given real-valued univariate random variables
Xi,..., Xk, we can use ERGO to efficiently derive their
causal ordering, which in turn can be used to assess the plau-
sibility of a given causal DAG. Moreover, applying ERGO
in a framework for structure learning seems a particularly
promising avenue of future work. That is, we can use ERGO
to estimate the amount of directed information over an edge,
and so iteratively construct a causal graph.

Whereas ERGO is currently restricted to real-valued
data, our inference principle is defined over data in general.
We see two main lines for future work in this regard. First
of all, time series are a standard set-up for causal analysis.



We are exploring to what extend our framework provides a
theoretical foundation for Granger causality. Second, we aim
to instantiate our framework for discrete categorical data.
Recent results in pattern-based modelling provide promising
results to this end [22].

8 Conclusion

We proposed a new information theoretic principle for causal
inference based on Kolmogorov complexity. In a nutshell,
we measure the relative amount of information that one data
object gives about the other, and vice versa, in order to
determine the most likely causal direction by the strongest
direction of information between the objects.

To apply this in practice we presented ERGO, an effi-
cient instantiation for inferring the causal direction between
pairs of univariate or multivariate random variables. ERGO
is based on cumulative and Shannon entropy, and allows re-
liable causal inference without having to make assumptions
on the distributions or correlation relationship of the data.

Empirical evaluation showed that ERGO is highly accu-
rate, very resilient to noise, and outperforms the state of the
art by a wide margin. As future work, we plan to refine the
measures of complexity that ERGO uses, extend it toward in-
ferring causal networks, as well as studying instantiations of
our framework for time-series and discrete data.
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