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Abstract. Quantifying the difference between two distributions is a common
problem in many machine learning and data mining tasks. What is also common
in many tasks is that we only have empirical data. That is, we do not know the true
distributions nor their form, and hence, before we can measure their divergence
we first need to assume a distribution or perform estimation. For exploratory pur-
poses this is unsatisfactory, as we want to explore the data, not our expectations.
In this paper we study how to non-parametrically measure the divergence be-
tween two distributions. More in particular, we formalise the well-known Jensen-
Shannon divergence using cumulative distribution functions. This allows us to
calculate divergences directly and efficiently from data without the need for es-
timation. Moreover, empirical evaluation shows that our method performs very
well in detecting differences between distributions, outperforming the state of the
art in both statistical power and efficiency for a wide range of tasks.

1 Introduction

Measuring the difference between two distributions – their divergence – is a key element
of many data analysis tasks. Let us consider a few examples. In time series analysis, for
instance, to detect either changes or anomalies we need to quantify how different the
data in two windows is distributed [18, 23]. In discretisation, if we want to maintain
interactions, we should only merge bins when their multivariate distributions are sim-
ilar [13]. In subgroup discovery, the quality of a subgroup depends on how much the
distribution of its targets deviates from that of its complement data set [3, 6].

To optimally quantify the divergence of two distributions we need the actual dis-
tributions. Particularly for exploratory tasks, however, we typically only have access
to empirical data. That is, we do not know the actual distribution, nor even its form.
This is especially true for real-valued data. Although we can always make assumptions
(parametric) or estimating them by kernel density estimation (KDE), these are not quite
ideal in practice. For example, both parametric and KDE methods are prone to the curse
of dimensionality [22]. More importantly, they restrict our analysis to the specific types
of distributions or kernels used. That is, if we are not careful we are exploring our ex-
pectations about the data, not the data itself. To stay as close to the data as possible, we
hence study a non-parametric divergence measure.

In particular, we propose CJS, an information-theoretic divergence measure for nu-
merical data. We build it upon the well-known Jensen-Shannon (JS) divergence. Yet,
while the latter works with probability distribution functions (pdfs), which need to be
estimated, we consider cumulative distribution functions (cdfs) which can be obtained
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directly from data. CJS has many appealing properties. In a nutshell, it does not make as-
sumptions on the distributions or their relation, it permits non-parametric computation
on empirical data, and is robust against the curse of dimensionality.

Empirical evaluation on both synthetic and real-world data for a wide range of ex-
ploratory data analysis tasks including change detection, anomaly detection, discretisa-
tion, and subgroup discovery shows that CJS consistently outperforms the state of the
art in both quality and efficiency.

Overall, the main contributions of this paper are as follows:
(a) a new information-theoretic divergence measure CJS,
(b) a non-parametric method for computing CJS on empirical data, and
(c) a wide range of experiments on various tasks that validate the measure.

The road map of this paper is as follows. In Section 2, we introduce the theory of
CJS. In Section 3, we review related work. In Section 4 we evaluate CJS empirically. We
round up with discussion in Section 5 and finally conclude in Section 6. For readability
and succinctness, we postpone the proofs for the theorems to Appendix A.

2 Theory

We consider numerical data. LetX be a univariate random variable with dom(X) ⊆ R,
and let X be a multivariate random variable X = {X1, . . . , Xm}, with X ⊆ Rm. Our
goal is to measure the difference between two distributions p(X) and q(X) over the
same random variable, where we have np and nq data samples, respectively. We will
write p and q to denote the pdfs, and say P andQ for the respective cdfs. All logarithms
are to base 2, and by convention we use 0 log 0 = 0.

Ideally, a divergence measure gives a zero score iff p(x) = q(x) for every
x ∈ dom(X). That is, p(X) = q(X). Second, it is often convenient if the score is
symmetric. Third, it should be well-defined without any assumption on the values of
p(x) and q(x) for x ∈ dom(X). That is, no assumption the relation between p and q
needs to be made. Fourth, to explore the data instead of exploring our expectations, the
measure should permit non-parametric computation on empirical data. Finally, as real-
world data often has high dimensionality and limited observations, the measure should
be robust to the curse of dimensionality.

To address each of these desired properties, we propose CJS, a new information-
theoretic divergence measure. In short, CJS embraces the spirit of Kullback-Leibler
(KL) and Jensen-Shannon (JS) divergences, two well-known information-theoretic di-
vergence measures. They both have been employed widely in data mining [8, 12]. As
we will show, however, in their traditional form both suffer from some drawbacks w.r.t.
exploratory analysis. We will alleviate these issues with CJS.

2.1 Univariate Case

To ease presentation, let us discuss the univariate case; when X is a single variable.
On univariate distributions, we consider a single univariate random variable X . We

start with Kullback-Leibler divergence – one of the first information-theoretic diver-



gences proposed in statistics [9]. Conventionally, it is defined as follows.

KL(p(X) || q(X)) =

∫
p(x) log

p(x)

q(x)
dx .

Importantly, it holds that KL(p(X) || q(X)) = 0 iff p(X) = q(X). Although KL
is assymetic itself, we can easily achieve symmetry by using KL(p(X) || q(X)) +
KL(q(X) || p(X)). In addition, KL does suffer from two issues, however. First, it is
undefined if q(x) = 0 and p(x) 6= 0, or vice versa, for some x ∈ dom(X). Thus, p and
q have to be absolutely continuous w.r.t. each other for their KL score to be defined [11].
As a result, KL requires an assumption on the relationship between p and q. Second, KL
works with pdfs which need parametric or KDE estimation.

Another popular information-theoretic divergence measure is the Jensen-Shannon
divergence [11]. It is defined as

JS(p(X) || q(X)) =

∫
p(x) log

p(x)
1
2p(x) +

1
2q(x)

dx .

As for KL, for JS we also have that JS(p(X) || q(X)) = 0 iff p(X) = q(X), and
we can again obtain symmetry by considering JS(p(X) || q(X)) + JS(q(X) || p(X)).
In contrast, JS is well defined independent of the values of p(x) and q(x) with x ∈
dom(X). However, it still requires us to know or estimate the pdfs.

To address this, that is, to address the computability of JS on empirical data, we pro-
pose to redefine it by replacing pdfs with cdfs. This gives us a new divergence measure,
CJS, for cumulative JS divergence.

Definition 1 (Univariate CJS). The cumulative JS divergence of p(X) and q(X), de-
noted CJS(p(X ) || q(X )), is∫

P (x) log
P (x)

1
2P (x) +

1
2Q(x)

dx+
1

2 ln 2

∫
(Q(x)− P (x)) dx .

As we will explain shortly below, the second integral is required to make the
score non-negative. Similar to KL and JS, we address symmetry by considering
CJS(p(X) || q(X)) + CJS(q(X) || p(X)). Similar to JS, our measure does not make
any assumption on the relation of p and q. With the following theorem we proof that
CJS is indeed a divergence measure.

Theorem 1. CJS(p(X ) || q(X )) ≥ 0 with equality iff p(X) = q(X).

Proof. Applying in sequence the log-sum inequality, and the fact that α log α
β ≥

1
ln 2 (α− β) for any α, β > 0, we obtain∫

P (x) log
P (x)

1
2P (x) +

1
2Q(x)

dx ≥
∫
P (x)dx log

∫
P (x)dx∫

( 12P (x) +
1
2Q(x))dx

≥ 1

2 ln 2

∫
(P (x)−Q(x)) dx .



For the log-sum inequality, equality holds if and only if P (x)
1
2P (x)+ 1

2Q(x)
= δ for every

x ∈ dom(X) with δ being a constant. Further, equality of the second inequality holds
if and only if

∫
P (x)dx =

∫
( 12P (x) +

1
2Q(x))dx. Combining the two, we arrive at

δ = 1, i.e. P (x) = Q(x) for every x ∈ dom(X). Taking the derivatives of the two
sides, we obtain the result. ut

In Sec. 2.3, we will show in more detail that by considering cdfs, CJS permits non-
parametric computation on empirical data. Let us now consider multivariate variables.

2.2 Multivariate Case

We now consider multivariate X. In principle, the multivariate versions of KL and JS
are obtained by replacing X with X. We could arrive at a multivariate version of CJS
in a similar way. However, if we were to do so, we would have to work with the joint
distribution over all dimensions in X, which would make our score prone to the curse
of dimensionality. To overcome this, we build upon a factorised form of KL, as follows.

Theorem 2. KL (p(X) || q(X)) =

KL(p(X1 ) || q(X1 )) + KL(p(X2 | X1 ) || q(X2 | X1 ))

+ . . .+

KL(p(Xm | X \ {Xm}) || q(Xm | X \ {Xm}))

where

KL(p(Xi | X1, . . . , Xi−1) || q(Xi | X1, . . . , Xi−1))

=

∫
KL(p(Xi | x1, . . . , xi−1) || q(Xi | x1, . . . , xi−1))

× p(x1, . . . , xi−1)× dx1 × . . .× dxi−1

is named an (i− 1)-order conditional KL divergence.

Proof. We extend the proof of Theorem 2.5.3 in [5] to the multivariate case. ut

Theorem 2 states that KL(p(X) || q(X)) is the summation of the difference between
univariate (conditional) pdfs. This form of KL is less prone the curse of dimensional-
ity thanks to the low-order conditional divergence terms. We design the multivariate
version of CJS along the same lines. In particular, directly following Theorem 2 multi-
variate CJS is defined as.

Definition 2 (Fixed-Order CJS). CJS(p(X1, . . . , Xd) || q(X1, . . . , Xd)) is

CJS(p(X1) || q(X1)) + CJS(p(X2 | X1) || q(X2 | X1))

+ . . .+

CJS(p(Xd | X \ {Xd}) || q(Xd | X \ {Xd}))



where

CJS(p(Xi | X1, . . . , Xi−1) || q(Xi | X1, . . . , Xi−1))

=

∫
CJS(p(Xi | x1, . . . , xi−1) || q(Xi | x1, . . . , xi−1))

× p(x1, . . . , xi−1)× dx1 × . . .× dxi−1
is named an (i− 1)-order conditional CJS divergence.

From Definition 2, one can see the analogy between multivariate CJS and the fac-
torised form of KL. However, unlike KL, when defined as in Definition 2 CJS may be
variant to how we factorise the distribution, that is, the permutation of dimensions. To
circumvent this we derive a permutation-free version of CJS as follows. Let F be the
set of bijective functions σ : {1, . . . ,m} → {1, . . . ,m}.

Definition 3 (Order-Independent CJS). CJS(p(X) || q(X)) is

max
σ∈F

d∑
i=2

CJS
(
p(Xσ(1), . . . , Xσ(m)) || q(Xσ(1), . . . , Xσ(m))

)
.

Definition 3 eliminates the dependence on any specific permutation by taking the
maximum score over all permutations. Now we need to show that multivariate CJS is
indeed a divergence.

Theorem 3. CJS(p(X) || q(X)) ≥ 0 with equality iff p(X) = q(X).

Proof. We postpone the proof to Appendix A. ut

We now know that CJS is a suitable divergence measure for multivariate distribu-
tions. To compute CJS, however, we would have to search for the optimal permutation
among m! permutations. When m is large, this is prohibitively costly. We tackle this by
proposing CJSpr , a practical version of CJS.

Definition 4 (Practical CJS). CJSpr (p(X) || q(X)) is

CJS
(
p(Xσ(1), . . . , Xσ(m)) || q(Xσ(1), . . . , Xσ(m))

)
where σ ∈ F is a permutation such that CJS(Xσ(1)) ≥ . . . ≥ CJS(Xσ(m)).

In other words, CJSpr chooses the permutation corresponding to the sorting of di-
mensions in descending order of CJS values. The intuition behind this choice is that
the difference between p(Xi | . . .) and q(Xi | . . .) is likely reflected through the dif-
ference between p(Xi) and q(Xi). Thus, by ordering dimensions in terms of their CJS
values, we can approximate the optimal permutation. Although a greedy heuristic, our
experiments reveal that CJSpr works well in practice. For exposition, from now on we
simply assume that σ is the identity mapping function, i.e. the permutation of dimen-
sions is X1, . . . , Xm. Following the proof of Theorem 3, we also have that CJSpr is a
divergence measure.

Theorem 4. CJSpr (p(X) || q(X)) ≥ 0 with equality iff p(X) = q(X).

In the remainder of the paper we will consider CJSpr and for readability simply refer
to it as CJS.



2.3 Computing CJS

To compute CJS(p(X) || q(X)), we need to compute unconditional and conditional
CJS. For the former, suppose that we want to compute CJS(p(X ) || q(X )) for X ∈ X.
Let v ≤ X[1] ≤ . . . ≤ X[np] ≤ V be realisations of X drawn from p(X). Further, let
Pnp

(x) = 1
np

∑np

j=1 I(X[j] ≤ x). Following [15], we have

∫
P (x)dx =

np−1∑
j=1

(X[j + 1]−X[j])
j

np
+ (V −X[np]) .

The other terms required for calculating CJS(p(X ) || q(X )) (cf., Definition 1), e.g.∫
Q(x)dx, are similarly computed. More details can be found in [15].

Computing conditional CJS terms, however, requires pdfs – which are unknown.
We resolve this in a non-parametric way using optimal discretisation. That is, we first
compute CJS(p(X1) || q(X1)). Next, we calculate CJS(p(X2 | X1) || q(X2 | X1))
by searching for the discretisation of X1 that maximises this term. At step k ≥ 3, we
compute CJS(p(Xk | X1, . . . , Xk−1) || q(Xk | X1, . . . , Xk−1)) by searching for the
discretisation ofXk−1 that maximises this term. Thus, we only discretise the dimension
picked in the previous step and do not re-discretise any earlier chosen dimensions. First
and foremost, this increases the efficiency of our algorithm. Second, and more impor-
tantly, it facilitates interpretability as we only have to consider one discretisation per
dimension.

Next, we show that the discretisation at a step can be done efficiently and optimally
by dynamic programming. For simplicity, let X′ ⊂ X be the set of dimensions already
picked and discretised. We denote X as the dimension selected in the previous step but
not yet discretised. Let Xc be the dimension selected in this step. Our goal is to find the
discretisation of X maximising CJS(p(Xc | X′, X) || q(Xc | X′, X)).

To accomplish this, let X[1] ≤ . . . ≤ X[np] be realisations of X drawn from the
samples of p(X). We write X[j, u] for {X[j], X[j + 1], . . . , X[u]} where j ≤ u. Note
that X[1, np] is in fact X . We use

CJS(p(Xc | X′, 〈X [j , u]〉) || q(Xc | X′, 〈X [j , u]〉))

to denote CJS(p(Xc | X′) || q(Xc | X′)) computed using the (u − j + 1) samples of
p(X) corresponding to X[j] to X[u], projected onto X . For 1 ≤ l ≤ u ≤ np, we write

f(u, l) = max
dsc:|dsc|=l

CJS
(
p(Xc | X′, Xdsc[1, u]) || q(Xc | X′, Xdsc[1, u])

)
where dsc is a discretisation of X[1, u], |dsc| is its number of bins, and Xdsc[1, u] is
the discretised version of X[1, u] produced by dsc. For 1 < l ≤ u ≤ np, we have

Theorem 5. f(u, l) = max
j∈[l−1,u)

Aj where

Aj =
j

u
f(j, l − 1) +

u− j
u

CJS (p(Xc | X′, 〈X[j + 1, u]〉) || q(Xc | X′, 〈X[j + 1, u]〉))

Proof. We postpone the proof to Appendix A. ut



Theorem 5 shows that the optimal discretisation of X[1, u] can be derived from that
of X[1, j] with j < u. This allows us to design a dynamic programming algorithm to
find the discretisation of X maximising CJS(p(Xc | X′, X) || q(Xc | X′, X)).

2.4 Complexity Analysis

We now discuss the time complexity of computing CJS(p(X) || q(X)). When discretis-
ing a dimension X ∈ X, if we use its original set of data samples as cut points, the
time complexity of solving dynamic programming is O(n2p), rather restrictive for large
data. Most cut points, however, will not be used in the optimal discretisation. To gain
efficiency, we can hence impose a maximum grid size max grid = nεp and limit the
number of cut points to c × max grid with c > 1. To find these candidate cut points,
we follow Reshef et al. [20] and apply equal-frequency binning on X with the number
of bins equal to (c×max grid + 1). Note that this pre-processing trades off accuracy
for efficiency. Other types of pre-processing are left for future work.

Regarding ε and c, the larger they are, the more candidate discretisations we con-
sider, and hence, at a higher the computational cost, the better the result. Our empirical
results show that ε = 0.5 and c = 2 offers a good balance between quality and effi-
ciency, and we will use these values in the experiments. The cost of discretising each
dimension X then is O(np). The overall complexity of computing CJS(p(X) || q(X))
is therefore O(m× np). Similarly, the complexity of computing CJS(q(X) || p(X)) is
O(m× nq).

2.5 Summing Up

We note that CJS is asymmetric. To have a symmetric distance, we use

CJSsym(p(X) || q(X)) = CJS(p(X) || q(X)) + CJS(q(X) || p(X)) .

In addition, we present two important properties pertaining specifically to univariate
CJSsym . Although in the interest of space we will not explore these properties empiri-
cally, but they may be important to know for other applications of our measure.

Theorem 6. CJSsym(p(X ) || q(X )) ≤
∫
(P(x ) +Q(x )) dx .

Proof. We postpone the proof to Appendix A. ut

Theorem 7. Univariate
√

CJSsym is a metric.

Proof. We follow the proof of Theorem 1 in [7]. ut

Theorem 6 tells us that the value of univariate CJSsym is bounded above, which
facilitates interpretation [11]. Theorem 7 on the other hand says that the square root of
univariate CJSsym is a metric distance. This is beneficial for, e.g. query optimisation in
multimedia databases.



3 Related Work

Many divergence measures have been proposed in the literature. Besides Kullback-
Leibler and Jensen-Shannon, other well-known divergence measures include the
Kolmogorov-Smirnov test (KS), the Cramér-von Mises criterion (CM), Earth Mover’s
Distance (EMD), and the quadratic measure of divergence (QR) [13]. Each has its own
strengths and weaknesses – most particularly w.r.t. exploratory analysis. For example,
multivariate KS, CM, EMD, and QR all operate on the joint distributions over all di-
mensions. Thus, they inherently suffer from the curse of dimensionality, which reduces
their statistical power when applied on non-trivial numbers of dimensions. In addition,
EMD needs probability mass functions (pmfs). While readily available for discrete data,
real-valued data first needs to be discretised. There currently exists no discretisation
method that directly optimises EMD, however, by which the results may turn out ad
hoc. Recently, Perez-Cruz [17] studied how to estimate KL using cdfs. Park et al. [16]
proposed CKL, redefining KL by replacing pdfs with cdfs. While computable on empir-
ical data, as for regular KL it may be undefined when p(x) = 0 or q(x) = 0 for some
x ∈ dom(X). Further, CKL was originally proposed as a univariate measure. Wang et
al. [24] are the first to formulate JS using cdfs. However, their CJS relies on joint cdfs
and hence suffers from the curse of dimensionality.

Many data mining tasks require divergence measures. For instance, for change de-
tection on time-series, it is necessary to test whether two windows of data are sampled
from the same underlying distribution. Song et al. [23] proposed such a test, using Gaus-
sian kernels to approximate the data distribution – including the joint distribution over
all dimensions. Generalisations of KL computed using Gaussian kernels have shown
to be powerful alternatives [8, 12]. KL is also used for anomaly detection in time se-
ries, where we can compute an anomaly score for a window against the reference data
set [18]. In interaction-preserving discretisation we need to assess how different (multi-
variate) distributions are between two consecutive bins. This can be done through con-
trast mining [3], or by using QR [13]. In multi-target subgroup discovery, also known
as exceptional model mining [10], we need to compare the distributions of subgroup
against that of its complement data set. Leman et al. use a quadratic measure of di-
vergence [10], whereas Duivesteijn et al. consider the edit distance between Bayesian
networks [6]. In Section 4, we will consider the efficacy of CJS for each of these areas.

Nguyen et al. [15] proposed a correlation measure inspired by factorised KL using
cumulative entropy [19]. Although it permits reliable non-parametric computation on
empirical data, it uses ad hoc clustering to compute conditional entropies. Nguyen et
al. [14] showed that these are inferior to optimal discretisation, in their case for total cor-
relation. In CJS we use the same general idea of optimal discretisation, yet the specifics
for measuring divergence are nontrivial and had to be developed from scratch.

4 Experiments

Next, we empirically evaluate CJS. In particular, we will evaluate the statistical power at
which it quantifies differences between data distributions, and its scalability to data size
and dimensionality. In addition, we evaluate its performance in four exploratory data



mining tasks. We implemented CJS in Java, and make our code available for research
purposes.1 All experiments were performed single-threaded on an Intel(R) Core(TM)
i7-4600U CPU with 16GB RAM. We report wall-clock running times.

We compare CJS to MG [23] and RSIF [12], two measures of distribution difference
recently proposed for change detection on time series. In short, to compare two sam-
ples Sp and Sq , MG randomly splits Sp into S1

p and S2
p . Next, it uses S1

p to model the
distribution of data. Then it fits S2

p and Sq into the model. The difference in their fitness
scores is regarded as the difference between Sp and Sq . RSIF on the other hand uses a
non-factorised variant of KL divergence. To compute this divergence, it estimates the
ratio p(X)

q(X) . As third baseline, we consider QR, a quadratic measure of distribution dif-
ference recently proposed by Nguyen et al. [13]. It works on P (X) and Q(X), i.e. the
cdfs of all dimensions. Note that by their definition these three competitors are prone
to the curse of dimensionality. Finally, we include CKL, extended to the multivariate
setting similarly to CJS.

4.1 Statistical Power

Our aim here is to examine if our measure is really suitable for quantifying the differ-
ence between two data distributions. For this purpose, we perform statistical tests using
synthetic data. To this end, the null hypothesis is that the two distributions are similar.
To determine the cutoff for testing the null hypothesis, we first generate 100 pairs of
data sets of the same size (n) and dimensionality (m), and having the same distribution
f1. Next, we compute the divergence score for each pair. Subsequently, we set the cut-
off according to the significance level α = 0.05. We then generate 100 pairs of data
sets, again with the same n and m. However, two data sets in such a pair have different
distributions. One follows distribution f1 while the other follows distribution f2. The
power of the measure is the proportion of the 100 new pairs of data sets whose diver-
gence scores exceed the cutoff. We simulate a noisy setting by adding Gaussian noise
to the data. We show the results in Fig. 1 for n = 1000 and varying over m with f1 and
f2 two Gaussian distributions with different mean vectors and covariance matrices. For
other data sizes and distributions we observe the same trend.

Inspecting these results, we find that CJS obtains higher statistical power than other
measures. Moreover, it is very stable across dimensionality and noise. Other measures,
especially QR and RSIF, deteriorate with high dimensionality. Overall, we find that CJS
reliably measures the divergence of distributions, regardless of dimensionality or noise.

4.2 Scalability

Next, we study the scalability of our measures with respect to the data size n and di-
mensionality m. For scalability to n, we generate data sets with m = 10 and n varied
from 1 000 to 20 000. For scalability to m, we generate data sets with n = 1000 and
m varied from 1 to 80. We present the results in Fig. 2. We observe that our measure

1 http://eda.mmci.uni-saarland.de/cjs/
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Fig. 1. [Higher is better] Statistical power vs. dimensionality of CJS, CKL, QR, RSIF, and MG on
synthetic data sets. Overall, CJS achieves the best statistical power across different dimensionality
and noise levels.

is efficient. It scales similarly as CKL, QR, and MG, and much better than RSIF. Com-
bining this with our results regarding statistical power, we conclude that CJS yields the
best balance between quality and efficiency.

The results show that CJS outperforms CKL while the two have similar runtime. We
therefore exclude CKL in the remainder.

4.3 Change Detection on Time Series

Divergence measures are widely used for change detection on time series [4, 12, 21].
The main idea is that given a window size W , at each time instant t, we measure the
difference between the distribution of data over the interval [t −W, t) to that over the
interval [t, t+W ). A large difference is an indicator that a change may have occurred.
The quality of change detection is thus dependent on the quality of the measure. In this
experiment, we apply CJS in change detection. In particular, we use it in the retrospec-
tive change detection model proposed by Liu et al. [12].

As data, we use the PAMAP data set,2 which contains human activity monitoring
data. Essentially, it consists of data recorded from sensors attached to 9 human subjects.
Each subject performs different types of activities, e.g. standing, walking, running, and
each activity is represented by 51 sensor readings recorded per second. Since each sub-
ject has different physical characteristics, we consider his/her data to be a separate data
set. One data set is very small, so we discard it. We hence consider 8 time series over

2 http://www.pamap.org/demo.html

http://www.pamap.org/demo.html


0.1 0.5 1 1.5 2

·104

0

100

200

300

400

500

data size (n)

tim
e

(s
)

CJS

CKL

QR

RSIF

MG

(a) Runtime against data size

1 20 40 60 80

0

20

40

60

80

dimensionality (m)

tim
e

(s
)

(b) Runtime against dimensionality

Fig. 2. [Lower is better] Runtime scalability of CJS, CKL, QR, RSIF, and MG on synthetic data
sets. Overall, CJS scales similarly to CKL, QR, and MG and much better than RSIF.

Data CJS QR RSIF MG

Subject 1 0.972 0.658 0.662 0.775
Subject 2 0.977 0.669 0.694 0.782
Subject 3 0.971 0.663 0.857 0.954
Subject 4 0.973 0.641 0.662 0.642
Subject 5 0.988 0.678 0.756 0.850
Subject 6 0.977 0.662 0.497 0.550
Subject 7 0.978 0.646 0.782 0.705
Subject 8 0.973 0.741 0.552 0.424

Average 0.976 0.670 0.683 0.710
Table 1. [Higher is better] AUC scores of CJS, QR, RSIF, and MG in time-series change detection
on PAMAP data sets. Highest values are in bold. Overall, CJS yields the best accuracy across all
subjects.

51 dimensions with in the order of 100 000 time points. In each time series, the time
instants when the respective subject changes his/her activities are regarded as change
points. As the change points are known, we evaluate how well each measure tested re-
trieves these cut points. It is expected that each measure should assign higher difference
scores at the change points in comparison to other normal time instants. As performance
metric we construct Receiver Operating Characteristic (ROC) curves and consider the
Area Under the ROC curve (AUC) [8, 12, 23].

Table 1 gives the results. We see that CJS consistently achieves the best AUC over
all subjects. Moreover, it outperforms its competitors with relatively large margins.

4.4 Anomaly Detection on Time Series

Closely related to change detection is anomaly detection [2, 18]. The core idea is that a
reference data set is available as training data. For example, obtained for instance from
historical records. It is used for building a statistical model capturing the generation
process of normal data. Then, a window is slid along the test time series to compute
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Fig. 3. [Higher is better] ROC curves of CJS and GGM regarding time-series anomaly detection
on the TEP data set. AUC scores of CJS are respectively 0.780, 0.783, and 0.689. AUC scores of
GGM are respectively 0.753, 0.691, and 0.552. Overall, CJS outperforms GGM.

the anomaly score for each time instant, using the model constructed. With CJS, we can
perform the same task by simply comparing the distribution over a window against that
of the reference set. That is, no model construction is required. In contrast to GGM [18]
– a state of the art method for anomaly detection in time series – CJS can be considered
as a ‘lazy’ detector. We will assess how CJS performs against GGM. For this, we use
the TEP data set, as it was used by Qiu et al. [18]. It contains information on an indus-
trial production process. The data has 52 dimensions. Following their setup, we set the
window size to 10. We vary the size of the training set to assess stability.

Fig. 3 presents the results. We see that CJS outperfoms GGM at its own game. In
particular, we see that CJS is less sensitive to the size of the training set than GGM,
which could be attributed to its ‘lazy’ approach. Overall, the conclusion is that CJS
reliably measures the difference of multivariate distributions.

4.5 Multivariate Discretisation

When discretising multivariate data the key goal is to discretise the data such that the
output data preserves the most important multivariate interactions in the input data [3,
13]. Only when we do so it will be possible to use techniques that require discrete data
– such as pattern mining – to pick up on truly interesting correlations. One of the major
components of interaction-preserving discretisation is to measure the difference of data
distributions in different bins. The difference scores are then used to decide if bin merge
takes place or not.

In principle, the better such measure, the better correlations can be maintained. For
example, the better pattern-based compressors such as COMPREX [1] can compress it.
In this experiment, we apply CJS in IPD [13] – a state of the art technique for interaction-
preserving discretisation. To evaluate, we apply COMPREX to the discretised data and
compare the total encoded size. We compare against original IPD, which uses QR. For
testing purposes, we use 6 public data sets available in the UCI Repository.

We display the results in Fig. 4. The plot shows the relative compression rates with
IPD as the bases, per data set. Please note that lower compression costs are better. Going
over the results, we can see that CJS improves the performance IPD in 4 out of 6 data
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Fig. 4. [Lower is better] Relative compression costs of CJS and IPD in interaction-preserving
discretisation. COMPREX [1] is the compressor. The compression costs of IPD are the bases.
Overall, CJS outperforms IPD.

sets. This implies that CJS reliably assesses the difference of multivariate distributions
in different bins [13].

4.6 Multi-Target Subgroup Discovery

In subgroup discovery we are after finding queries – patterns – that identify subgroups
of data points for which the distribution of some target attribute varies strongly com-
pare to either the complement, or the whole data. As the name implies, in multi-target
subgroup discovery we do not consider a univariate targets, but multivariate ones.

Formally, let us consider a data set D with attributes A1, . . . , Ak and targets
T1, . . . , Tl. A subgroup S on D is characterized by condition(s) imposed on some
attribute(s). A condition on an attribute A has the form of an interval. The subset
of D corresponding to S is denoted as DS . The set of remaining data points, the
complement set, is DS = D \ DS . Within subgroup discovery, exceptional model
mining is concerned with detecting S such that p(T1, . . . , Tl | DS) is different from
p(T1, . . . , Tl | DS) [6, 10]. The higher the difference, the better.

In this experiment, we use CJS for quantifying the distribution divergence non-
parametrically. Apart from that, we apply as-is the search algorithm proposed in [6]
for discovering high quality subgroups. As data sets, we use 3 public ones. Two from
the UCI Repository, namely, the Bike dataset of 731 data points over 6 attributes with 2
targets, and the Energy dataset of 768 rows over 8 attributes also with 2 targets. Third,
we consider the Chemnitz dataset of 1440 rows over 3 attributes and with 7 targets.3 Our
objective here is to see if CJS can assist in discovering interesting subgroups on these
data sets. The representative subgroups on three data sets are in Table 2 (all subgroups
are significant at significance level α = 0.05).

Going over the results, we see CJS to detect subgroups having different distribution
in targets compared to that of their respective complement set. For instance, on Bike
we discover the subgroup temperature ≥ 6.5 ∧ temperature < 10.7. In this subgroup,
we find that its numbers of registered and non-registered bikers are significantly lower
than those of its complement set. This is intuitively understandable, as at these low
temperatures one expects to see only a few bikers, and especially few casual ones. In

3 http://www.mathe.tu-freiberg.de/Stoyan/umwdat.html

http://www.mathe.tu-freiberg.de/Stoyan/umwdat.html


contrast, for the subgroup temperature ≥ 27.1 ∧ temperature < 31.2, the numbers of
bikers in both targets are very high. This again is intuitively understandable.

From the Energy data, we find that the two subgroups surface area ≥ 624.8 ∧
surface area < 661.5 and roof area < 124.0 have much higher heating and cooling
loads compared to their complement sets.

The previous two data sets contain 2 targets only. In contrast, Chemnitz data set has
7 targets, which poses a more challenging task. Nevertheless, with CJS we can detect
informative subgroups as it can capture divergences between distributions that are in-
volved in different numbers of targets – not all target attributes have to be ‘divergent’ at
the same time, after all. In particular, the subgroup temperature ≥ 4.25∧temperature <
7.5 has its divergence traced back to five targets. On the other hand, there are only two
targets responsible for the divergence of the subgroup wind < −0.75.

Overall, we find that CJS can be successfully applied to non-parametrically discover
subgroups in real-world data with multiple targets.

5 Discussion

The experiments show that CJS is efficient and obtains high statistical power in detecting
divergence for varying dimensionality and noise levels. Further, we demonstrated that
CJS is well-suited for a wide range of exploratory tasks, namely time-series change
detection and anomaly detection, interaction-preserving discretisation, and multi-target
subgroup discovery. The improvement in performance of CJS over existing measures
can be traced back to its three main properties: (a) it does not make any assumption
on the relation between two distributions, (b) it allows non-parametric computation on
empirical data, and (c) it is less sensitive to the curse of dimensionality.

Yet, there is room for alternative methods as well as further improvements. For in-
stance, in this paper, we pursue the non-parametric setting. As long as the knowledge
on data distributions is known, one can resort to parametric methods to compute other
divergence measures, e.g. KL and JS. A promising direction is to extend CJS to hetero-
geneous data types. That is, in addition to numerical data, we can consider categorical
data as well. A possible solution to this end is to combine JS and CJS. More in particular,
JS is used to handle categorical data; CJS is used for numerical data; and discretisation
can be used to bridge both worlds. The details, however, are beyond the scope of this
work. As future work, we also plan to develop new subgroup discovery methods that
integrate CJS more deeply into the mining process. This will help us to better exploit
the capability of CJS in this interesting branch of exploratory analysis.

6 Conclusion

In this paper, we proposed CJS, an information-theoretic divergence measure to quan-
tify the difference of two distributions. In short, CJS requires neither assumptions on
the forms of distributions nor their relation. Further, it permits efficient non-parametric
computation on empirical data. Extensive experiments on both synthetic and real-world
data showed that our measure outperforms the state of the art in both statistical power
and efficiency in a wide range of exploratory tasks.



Mean

Data Target subgroup (DS ) complement (DS )

Bike

6.5 ≤ temperature < 10.7 (support = 63)

registered bikers 166 913
non-registered bikers 1 889 3 840

27.1 ≤ temperature < 31.2 (support = 127)

registered bikers 1 347 743
non-registered bikers 4 406 3 499

Energy

624.8 ≤ surface area < 661.5 (support = 128)

heating 38.6 20.8
cooling 40.2 23.1

roof area < 124.0 (support = 192)

heating 31.6 19.1
cooling 33.1 21.7

Chemnitz

4.25 ≤ temperature < 7.5 (support = 370)

dust 53.5 109.7
SO2 80.6 184.4
NO2 20.4 41.4
NOx 50.2 94.3

wind < −0.75 (support = 395)

NO 69.0 39.0
NOx 106.4 74.1

Table 2. Representative subgroups discovered by CJS on Bike, Energy, and Chemnitz data sets.
On Chemnitz, only targets where the divergence is large are shown. Overall, CJS helps detect
high quality and informative subgroups on all three data sets.
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A Appendix

Proof (Theorem 3). First, we prove that

CJS(p(X1 , . . . ,Xm) || q(X1 , . . . ,Xm)) = 0

iff p(X) = q(X).

(⇒): From Theorem 1, we have p(Xi | X1, . . . , Xi−1) = q(Xi | X1, . . . , Xi−1) for
i ∈ [1,m]. This implies p(X) = q(X).

(⇐): When p(X) = q(X), we have p(Xi | X1, . . . , Xi−1) = q(Xi | X1, . . . , Xi−1)
for i ∈ [1,m]. Thus, following Theorem 1, we have that

CJS(p(X1 , . . . ,Xm) || q(X1 , . . . ,Xm)) = 0 .

The above proof in fact holds for any permutation. Thus, CJS(p(X) || q(X)) ≥ 0
with equality iff p(X) = q(X). ut

Proof (Theorem 5). Let

dsc∗ = arg max
dsc:|dsc|=l

CJS
(
p(Xc | X′, Xdsc[1, u]) || q(Xc | X′, Xdsc[1, u])

)
.

We denote l bins that dsc∗ generates on X as b(X)1, . . . , b(X)l. We write |b(X)t|
as the number of values of X in b(X)t. For each X ′i ∈ X′, we denote its bins as
b(X ′i)1, . . . , b(X

′
i)n′

i
.

Further, let cz =

z∑
i=1

|b(X)t|. Note that each bin of X is non-empty, i.e. cz ≥ z.

We use CJS (p(Xc | X′, bt) || q(Xc | X′, bt)) to denote CJS (p(Xc | X′) || q(Xc | X′))
computed using the samples of p(X) corresponding to the realizations of X in b(X)t,
projected onto Y and X′. We write |(t, t1, . . . , tk)| as the number of points in the cell
made up by bins b(X)t, b(X

′
1)t1 , . . . , b(X

′
|X′|)t|X′| .



We have: f(u, l)

=

l∑
t=1

n′
1∑

t1=1

. . .

n′
|X′|∑

t|X′|=1

|(t, t1, . . . , tk)|
u

×

CJS
(
p(Xc | b(E)t, b(X

′
1)t1 , . . . , b(X

′
|X′|)t|X′|) || q(Xc | b(E)t, b(X

′
1)t1 , . . . , b(X

′
|X′|)t|X′|)

)
=

l−1∑
t=1

n′
1∑

t1=1

. . .

n′
|X′|∑

t|X′|=1

|(t, t1, . . . , tk)|
u

×

CJS
(
p(Xc | b(E)t, b(X

′
1)t1 , . . . , b(X

′
|X′|)t|X′|) || q(Xc | b(E)t, b(X

′
1)t1 , . . . , b(X

′
|X′|)t|X′|)

)
+
|bl|
u

CJS (p(Xc | X′, bl) || q(Xc | X′, bl))

=
cl−1
u

l−1∑
t=1

n′
1∑

t1=1

. . .

n′
|X′|∑

t|X′|=1

|(t, t1, . . . , tk)|
u

×

CJS
(
p(Xc | b(E)t, b(X

′
1)t1 , . . . , b(X

′
|X′|)t|X′|) || q(Xc | b(E)t, b(X

′
1)t1 , . . . , b(X

′
|X′|)t|X′|)

)
+
u− cl−1

u
CJS (p(Xc | X′, 〈X[cl−1 + 1, u]〉) || q(Xc | X′, 〈X[cl−1 + 1, u]〉)

=
cl−1
u
f(cl−1, l − 1)

+
u− cl−1

u
CJS (p(Xc | X′, 〈X[cl−1 + 1, u]〉) || q(Xc | X′, 〈X[cl−1 + 1, u]〉) .

In the last line,

l−1∑
t=1

n′
1∑

t1=1

. . .

n′
|X′|∑

t|X′|=1

|(t, t1, . . . , tk)|
u

×

CJS
(
p(Xc | b(E)t, b(X

′
1)t1 , . . . , b(X

′
|X′|)t|X′|) || q(Xc | b(E)t, b(X

′
1)t1 , . . . , b(X

′
|X′|)t|X′|

)
is equal to f(cl−1, l − 1) because otherwise, we could increase f(u, l) by choosing a
different discretization of X[1, cl−1] into l− 1 bins. This in turn contradicts our defini-
tion of f(u, l). Since cl−1 ∈ [l− 1, u) and f(u, l) is maximal over all j ∈ [l− 1, u), we
arrive at the final result. ut
Proof (Theorem 6). We have:

CJSsym(p(X ) || q(X ))

=

∫
P (x) log

P (x)
1
2P (x) +

1
2Q(x)

dx+

∫
Q(x) log

P (x)
1
2P (x) +

1
2Q(x)

dx

=

∫
(P (x) +Q(x))

(
P (x)

P (x) +Q(x)
log

2P (x)

P (x) +Q(x)
+

Q(x)

P (x) +Q(x)
log

2Q(x)

P (x) +Q(x)

)
dx

=

∫
(P (x) +Q(x))

(
1−H

(
P (x)

P (x) +Q(x)
,

Q(x)

P (x) +Q(x)

))
dx.



As H(.) ≥ 0, we arrive at: CJSsym(p(X ) || q(X )) ≤
∫
(P(x ) +Q(x )) dx . ut
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