
VOG: Summarizing and Understanding Large Graphs

Danai Koutra
School of Computer Science

Carnegie Mellon University

danai@cs.cmu.edu

U Kang
Computer Science Department

KAIST

ukang@cs.kaist.ac.kr

Jilles Vreeken
Max Planck Institute for Informatics

and Saarland University

jilles@mpi-inf.mpg.de

Christos Faloutsos
School of Computer Science

Carnegie Mellon University

christos@cs.cmu.edu

Abstract
How can we succinctly describe a million-node graph with a
few simple sentences? How can we measure the ‘importance’
of a set of discovered subgraphs in a large graph? These are
exactly the problems we focus on. Our main ideas are to
construct a ‘vocabulary’ of subgraph-types that often occur
in real graphs (e.g., stars, cliques, chains), and from a set
of subgraphs, find the most succinct description of a graph
in terms of this vocabulary. We measure success in a well-
founded way by means of the Minimum Description Length
(MDL) principle: a subgraph is included in the summary if it
decreases the total description length of the graph.

Our contributions are three-fold: (a) formulation: we
provide a principled encoding scheme to choose vocabulary
subgraphs; (b) algorithm: we develop VOG, an efficient
method to minimize the description cost, and (c) applicability:
we report experimental results on multi-million-edge real
graphs, including Flickr and the Notre Dame web graph.

1 Introduction
Given a large graph, say, a social network like Facebook,
what can we say about its structure? As most real graphs,
the edge distribution will likely follow a power law [14], but
apart from that, is it random? If not, how can we efficiently
and in simple terms summarize which parts of the graph stand
out, and how? The focus of this paper is exactly finding
short summaries for large graphs, in order to gain a better
understanding of their characteristics.

Why not apply one of the many community detection,
clustering or graph-cut algorithms that abound in the litera-
ture [8, 11, 17, 20, 27], and summarize the graph in terms of
its communities? The answer is that these algorithms do not
quite serve our goal. Typically they detect numerous com-
munities without explicit ordering, so a principled selection
procedure of the most “important” subgraphs is still needed.
In addition to that, these methods merely return the discov-
ered communities, without characterizing them (e.g., clique,
star), and, thus, do not help the user gain further insights in
the properties of the graph.

In this paper, we propose VOG, an efficient and effective
method to summarize and understand large real-world graphs,

in particular graphs beyond the so-called “cavemen” networks
that only consist of well-defined, tightly-knit clusters (cliques
or near-cliques).

The first insight is to best describe the structures in a
graph using an enriched set of “vocabulary” terms: cliques
and near-cliques (which are typically considered by commu-
nity detection methods), and also stars, chains and (near)
bi-partite cores. The reasons we have chosen these “vocabu-
lary” terms are: (a) (near-) cliques are included, and so our
method works fine on “cavemen” graphs, and (b) stars [16],
chains [30] and bi-partite cores [18,27] appear very often, and
have semantic meaning (e.g., factions, bots) in the tens of real
networks we have seen in practice (e.g., IMDB movie-actor
graph, co-authorship networks, netflix movie recommenda-
tions, US Patent dataset, phonecall networks).

The second insight is to formalize our goal as a lossless
compression problem, and use the MDL principle. The best
summary of a graph is the set of subgraphs that describes
the graph most succinctly, i.e., compresses it best, and, thus,
helps a human understand the main graph characteristics in a
simple, non-redundant manner. A big advantage is that our
approach is parameter-free, as at any stage MDL identifies
the best choice: the one by which we save most bits.

Informally, we tackle the following problem:
PROBLEM 1. (INFORMAL)
• Given: a graph
• Find: a set of possibly overlapping subgraphs
• to most succinctly describe the given graph, i.e., explain

as many of its edges in as simple possible terms,
• in a scalable way, ideally linear on the number of edges.

and our contributions can be summarized as:

1. Problem Formulation: We show how to formalize
the intuitive concept of graph understanding using
principled, information theoretic arguments.

2. Effective and Scalable Algorithm: We design VOG
which is near-linear on the number of edges.

3. Experiments on Real Graphs: We empirically evalu-
ate VOG on several real, public graphs spanning up to
millions of edges. VOG spots interesting patterns like
‘edit wars’ in the Wikipedia graphs (Fig. 1).

(a) Original Wikipedia
Controversy graph (with
‘spring embedded’ layout [15]).
No structure stands out.

(b) VOG: 8 out of the 10 most
informative structures are stars
(their centers in red - Wikipedia
editors, heavy contributors etc.).

(c) VOG: The most informative
bipartite graph - ‘edit war’ - war-
ring factions (one of them, in
the top-left red circle), changing
each-other’s edits.

(d) VOG: the second most infor-
mative bipartite graph - another
‘edit war’, between vandals (bot-
tom left circle of red points) vs
responsible editors (in white).

Figure 1: VOG: summarization and understanding of the most informative, from an information theoretic point of view, structures of the
Wikipedia Controversy graph. Nodes stand for Wikipedia contributors and edges link users who edited the same part of the article.
Without VOG, in 1a, no clear structures stand out. VOG spots stars in 1b (Wikipedia editors and other heavy contributors), and bipartite
graphs in 1c and 1d (reflecting ‘edit wars’, i.e., editors reverting others’ edits). Specifically, 1c shows the dispute between the two parties
about a controversial topic and 1d shows vandals (red circles) vs responsible Wikipedia editors.

The paper outline is standard: overview, problem for-
mulation, method description, experiments, and conclusions.
Due to lack of space, we give more details and experiments
in the Appendix.

2 Proposed Method: Overview and Motivation
Before we give our two main contributions in the next sections
– the problem formulation, and the search algorithm –, we
first provide the high-level outline of VOG, which stands for
Vocabulary-based summarization of Graphs:
(a) We use MDL to formulate a quality function: a collec-

tion M of structures (e.g., a star here, cliques there, etc)
is as good as its description length L(G,M). Hence,
any subgraph or set of subgraphs has a quality score.

(b) We give an efficient algorithm for characterizing candi-
date subgraphs. In fact, we allow any subgraph discovery
heuristic to be used for this, as we define our framework
in general terms and use MDL to identify the structure
type of the candidates.

(c) Given a candidate set C of promising subgraphs, we
show how to mine informative summaries, removing
redundancy by minimizing the cost.

VOG results in a list M of, possibly overlapping subgraphs,
sorted in importance order (compression gain). Together
these succinctly describe the main connectivity of the graph.

The motivation behind VOG is that people cannot easily
understand cluttered graphs, whereas a handful of simple
structures are easily understood, and often meaningful. Next
we give an illustrating example of VOG, where the most
‘important’ vocabulary subgraphs that constitute a Wikipedia
article’s (graph) summary are semantically interesting.

Illustrating Example: In Fig. 1 we give the results of
VOG on the Wikipedia Controversy graph; the nodes are
editors, and editors share an edge if they edited the same part
of the article. Figure 1a shows the graph using the spring-
embedded model [15]. No clear pattern emerges, and thus

a human would have hard time understanding this graph.
Contrast that with the results of VOG. Figs. 1b–1d depict the
same graph, where we highlight the most important structures
(i.e., structures that save the most bits) discovered by VOG.

• Stars→ admins (+ vandals): in Fig. 1b, with red color,
we show the centers of the most important “stars”:
further inspection shows that these centers typically
correspond to administrators who revert vandalisms and
make corrections.

• Bipartite cores→ edit wars: Figs. 1c and 1d give the two
most important near-bipartite-cores. Manual inspection
shows that these correspond to edit wars: two groups of
editors reverting each others’ changes. For clarity, we
denote the members of one group by red nodes (left),
and hi-light the edges to the other group in pale yellow.

3 Problem Formulation
In this section we describe the first contribution, the MDL
formulation of graph summarization. To enhance readability,
we list the most frequently used symbols in Table 1.

In general, the Minimum Description Length principle
(MDL) [28], is a practical version of Kolmogorov Complex-
ity [21], which embraces the slogan Induction by Compres-
sion. Given a set of models M, the best model M ∈ M
minimizes L(M) + L(D |M), in which L(M) is the length
in bits of the description of M , and L(D | M) is the length
of the description of the data encoded with M . To ensure fair
comparison, MDL requires descriptions to be losslesss

We consider undirected graphs G(V, E) of n = |V|
nodes, and m = |E| edges, without self-loops. Our theory,
however, can be easily generalized to graphs in general. For
the graph summary, we use a set of graph structure types Ω
which we call a vocabulary. Although any graph structure can
be a part of the vocabulary, we choose the 6 most common
structures in real-world graphs ([18, 27, 30]) that are well-
known and understood by the graph mining community:
full and near cliques (fc,nc), full and near bi-partite cores

Table 1: Description of major symbols.

Notation Description

G graph
A adjacency matrix of G
V , n node-set, # of nodes of G resp.
E , m edge-set, # of edges of G resp.
fc, nc full and near clique resp.
fb, nb full and near bipartite core resp.
st, ch star, chain resp.
Ω vocabulary of structure types
C, Cx set of all/type x ∈ Ω candidate structures
M our model, essentially list of structures
s, t structures in M

area(s) edges of G (= cells of A) described by s
|S|, |s| cardinality of set S, # of nodes of s resp.
||s||, ||s||′ # of existing and non-existing edges in s resp.
M approximation of A deduced by M
E error matrix, E = M ⊕A

⊕ exclusive OR
L(G,M) # of bits to describe M , and G using M
L(M) # of bits to describe model M
L(s) # of bits to describe structure s

(fb,nb), stars (st), and chains (ch). Compactly, we have
Ω = {fc,nc, fb,nb, ch, st}. We will formally introduce
these types after formalizing our goal.

To use MDL for graph summarization, we need to define
what our models M are, how a model M ∈ M describes
data, and how we encode this in bits. We do this next.

3.1 MDL for Graph Summarization. As models M , we
consider ordered lists of graph structures, with possible node
(but not edge) overlaps. Each structure s ∈ M identifies
a patch of the adjacency matrix A and describes how it is
connected (Fig 2). We refer to this patch, or more formally the
edges (i, j) ∈ A that structure s describes, as area(s,M,A),
where we omit M and A whenever clear from context.

Let Cx be the set of all possible structures of type x ∈ Ω,
and C the union of all of those sets, C = ∪xCx. For example,
Cfc is the set of all possible full cliques. Our model family
M then consists of all possible permutations of all possible
subsets of C – recall that the models M are ordered lists of
graph structures. By MDL, we are after the M ∈M that best
balances the complexity of encoding both A and M .

Our general approach for transmitting the adjacency
matrix is as follows. First, we transmit the model M .
Then, given M , we can build the approximation M of the
adjacency matrix, as defined by the structures in M ; we
simply iteratively consider each structure s ∈ M , and fill
out the connectivity of area(s) in M accordingly. As M is a
summary, it is unlikely that M = A. Still, in order to fairly
compare between models, MDL requires an encoding to be
lossless. Hence, besides M , we also need to transmit the error
matrix E, which encodes the error w.r.t. A. We obtain E by
taking the exclusive OR between M and A, i.e., E = M⊕A.

near-clique B
clique A

star C

chain D

Figure 2: Illustration of our main idea on a toy adjacency matrix:
VOG identifies overlapping sets of nodes, that form vocabulary
subgraphs (cliques, stars, chains, etc). With overlap, VOG allows for
soft clustering of nodes, as in clique A and near-clique B. Stars look
like inverted L shapes (e.g., star C). Chains look like lines parallel
to the main diagonal (e.g., chain D).

Once the recipient knows M and E, the full adjacency matrix
A can be reconstructed without loss.

With this in mind, we have as our main score

L(G,M) = L(M) + L(E),

where L(M) and L(E) are the numbers of bits that describe
the structures, and the error matrix E respectively. The formal
definition of the problem we tackle in this paper is:

PROBLEM 2. (MINIMUM GRAPH DESCRIPTION PROBLEM)
Given a graph G with adjacency matrix A, and the graph
structure vocabulary Ω, by the MDL principle we are after
the smallest model M for which the total encoded length

L(G,M) = L(M) + L(E)

is minimal, where E = M⊕A is the error matrix, and M is
an approximation of A deduced by M .

Next, we formalize the encoding of the model and the
error matrix.

3.2 Encoding the Model. For the encoded length of a
model M ∈M, we have

L(M) = LN(|M |+ 1) + log

(
|M |+ 1

|Ω|+ 1

)
+
∑
s∈M

(
− log Pr(x(s) |M) + L(s)

)
.

First, we transmit the total number of structures in M using
LN, the MDL optimal encoding for integers ≥ 1 [28]. Next,
by an index over a weak number composition, we optimally
encode the number of structures of each type x ∈ Ω in model
M . Then, for each structure s ∈M , we encode its type x(s)
with an optimal prefix code [12], and finally its structure.

To compute the encoded length of a model, we need to
define L(s) per structure type:
Cliques. For a full clique, a set of fully-connected nodes, we
first encode the number of nodes, and then their ids:

L(fc) = LN(|fc|) + log

(
n

|fc|

)
.

As M generalizes the graph, we do not require that fc
is a full clique in G. If only few edges are missing, it may
still be convenient to describe it as such. Every missing edge,
however, adds to the cost of transmitting E.

As long as they stand out from the background distri-
bution, less dense or near-cliques can be as interesting as
full-cliques. We encode these as follows:

L(nc) = LN(|nc|) + log

(
n

|nc|

)
+ log(|area(nc)|) + ||nc||l1 + ||nc||′l0.

We transmit the number and ids of nodes as above, and edges
by optimal prefix codes. We write ||nc|| and ||nc||′ for resp.
the number of present and missing edges in area(nc). Then,
l1 = − log((||nc||/(||nc|| + ||nc||′)), and analogue for l0,
are the lengths of the optimal prefix codes for resp. present
and missing edges. The intuition is that the more dense/sparse
a near-clique is, the cheaper encoding it becomes. Note that
this encoding is exact; no edges are added to E.
Bipartite Cores. Bipartite cores are defined as non-empty,
non-intersecting sets of nodes, A and B, for which there are
edges only between the sets A and B, and not within.

The encoded length of a full bipartite core fb is

L(fb) = LN(|A|) + LN(|B|) + log

(
n

|A|, |B|

)
,

where we encode the size of A, B, and then the node ids.
As for cliques, for a near bi-partite cores nb we have

L(nb) = LN(|A|) + LN(|B|) + log

(
n

|A|, |B|

)
+ log(|area(nb)|) + ||nb||l1 + ||nb||′l0.

Stars. A star is specific case of the bipartite core that consists
of a single node (hub) in A connected to a set B of at least 2
nodes (spokes). For L(st) of a given star st we have

L(st) = LN(|st | − 1) + log n + log

(
n− 1

|st | − 1

)
,

where |st | − 1 is the number of spokes. We identify the hub
out of n nodes, and the spokes from the remainder.
Chains. A chain is a list of nodes such that every node has
an edge to the next node, i.e. under the right permutation
of nodes, A has only the super-diagonal elements (directly
above the diagonal) non-zero. As such, for the encoded length
L(ch) for a chain ch we have

L(ch) = LN(|ch| − 1) +

|ch|∑
i=0

log(n− i),

where we first encode the number of nodes in the chain, and
then their ids in order. Note

∑|ch|
i=0 log(n− i) ≤ |ch| log n.

3.3 Encoding the Error. Next, we discuss how we encode
the errors made by M with regard to A and store the
information in the encoding matrix E. While there are many
possible approaches, not all are equally good: we know that
the more efficient our encoding is, the less spurious ‘structure’
will be discovered [23].

We hence follow [23] and encode E in two parts, E+

and E−. The former corresponds to the area of A that M
does model, and for which M includes superfluous edges.
Analogue, E− consists of the area of A not modeled by M ,
for which M lacks edges. We encode these separately as they
are likely to have different error distributions. Note that as
we know near cliques and near bipartite cores are encoded
exactly, we ignore these areas in E+. We encode the edges
of E+, and E− similarly as we do for near-cliques:

L(E+) = log(|E+|) + ||E+||l1 + ||E+||′l0
L(E−) = log(|E−|) + ||E−||l1 + ||E−||′l0

That is, we first encode the number of 1s in E+ (or E−),
after which we transmit the 1s and 0s using optimal prefix
codes. We choose prefix codes over a binomial as this allows
us to efficiently calculate local gain estimates in our algorithm
without sacrificing much encoding efficiency.
Remark. Clearly, for a graph of n nodes, the search space
M is enormous, as it consists of all possible permutations of
the collection C of all possible structures over the vocabulary
Ω. Unfortunately, it does not exhibit trivial structure, such as
(weak) (anti)monotonicity, that we could exploit for efficient
search. Further, Miettinen and Vreeken [24] showed that
for a directed graph finding the MDL optimal model of only
full-cliques is NP-hard. Hence, we resort to heuristics.

4 VoG: Summarization Algorithm
Now that we have the arsenal of graph encoding based on
the vocabulary of structure types, Ω, we move on to the next
two key ingredients: finding good candidate structures, i.e.,
instantiating C, and then mining informative graph summaries,
i.e., finding the best model M . The pseudocode of VOG is
given in Algorithm 1, and the code is available for research
purposes at www.cs.cmu.edu/˜dkoutra/SRC/VoG.tar .

4.1 Step 1: Subgraph Generation. Any combination of
clustering and community detection algorithms can be used
to decompose the graph into subgraphs. These include,
but are not limited to Cross-asssociations [8], Subdue [11],
SLASHBURN [16], Eigenspokes [27], and METIS [17].

4.2 Step 2: Subgraph Labeling. Given a subgraph from
the set of clusters / communities discovered in the previous
step, we search for the structure x ∈ Ω that best characterizes
it, with no or some errors (e.g., perfect clique, or clique with
some missing edges, encoded as error).

Step 2.1: Labeling Perfect Structures. First, the
subgraph is tested against our vocabulary structure types for

www.cs.cmu.edu/~dkoutra/SRC/VoG.tar

error-free match: full clique, chain, bipartite core, or star. The
test for clique or chain is based on its degree distribution. A
subgraph is bipartite graph if the magnitudes of its maximum
and minimum eigenvalues are equal. To find the node ids
in the two node sets, A and B, we use BFS (Breadth First
Search) with node coloring. If one of the node sets has size 1,
then the given substructure is encoded as star.

Step 2.2: Labeling Approximate Structures. If the
subgraph does not belong to Ω, the search continues for
the vocabulary structure type that, in MDL terms, best
approximates the subgraph. To this end, we encode the
subgraph as each of the 6 candidate vocabulary structures,
and choose the structure that has the lowest encoding cost.

Let m∗ be the graph model with only one subgraph
encoded as structure ∈ Ω (e.g., clique) and the additional
edges included in the error matrix. For reasons of efficiency,
instead of calculating the full cost L(G,m∗) as the encoding
cost of each subgraph representation, we estimate the local
encoding cost L(m∗) +L(E+

m∗) +L(E−m∗), where E+
m∗ and

E−m∗ encode the incorrectly modeled, and unmodeled edges
respectively (Sec. 3). The challenge of the step is to efficiently
identify the role of each node in the subgraph (e.g., hub/spoke
in a star, member of set A or B in a near-bipartite core, order
of nodes in chain) for the MDL representation. We elaborate
on each structure next.
Clique. This is the simplest representation, as all the nodes
have the same structural role. For near-cliques we ignore Enc ,
and, so, the encoding cost is L(nc).
Star. The highest-degree node of the subgraph is encoded as
the hub, and the rest nodes as spokes.
Bipartite core. In this case, the problem of identifying the
role of each node reduces to finding the maximum bipartite
graph, which is known as max-cut problem, and is NP-
hard. The need of a scalable graph summarization algorithm
makes us resort to approximation algorithms. Finding the
maximum bipartite graph can be reduced to semi-supervised
classification. We consider two classes which correspond to
the two node sets, A and B, of the bipartite graph, and the
prior knowledge is that the highest-degree node belongs to
A, and its neighbors to B. To propagate these classes/labels,
we employ Fast Belief Propagation (FaBP) [19] assuming
heterophily (i.e., connected nodes belong to different classes).
For near-bipartite cores L(E+

nb) is omitted.
Chain. Representing the subgraph as a chain reduces
to finding the longest path in it, which is also NP-hard.
Therefore, we employ the following heuristic. Initially, we
pick a node of the subgraph at random, and find its furthest
node using BFS (temporary start). Starting from the latter
and by using BFS again, we find the subsequent furthest
node (temporary end). Then we extend the chain by local
search. Specifically, we consider the subgraph from which
all the nodes that already belong to the chain, except for its
endpoints, are removed. Then, starting from the endpoints we

Algorithm 1 VOG
Input: graph G

Step 1: Subgraph Generation. Generate candidate – possibly
overlapping – subgraphs using one or more graph decomposition
methods.
Step 2: Subgraph Labeling. Characterize each subgraph as a
perfect structure x ∈ Ω, or an approximate structure by using
MDL to find the type x that locally minimizes the encoding cost.
Populate the candidate set C.
Step 3: Summary Assembly. Use the heuristics PLAIN, TOP10,
TOP100, GREEDY’NFORGET (Sec. 4.3) to select a non-redundant
subset from the candidate structures to instantiate the graph model
M . Pick the model of the heuristic with the lowest description
cost.

return graph summary M and its encoding cost.

employ again BFS. If new nodes are found during this step,
they are added in the chain (rendering it a near-chain with
few loops). The nodes of the subgraph that are not members
of this chain are encoded as error in Ech .

After representing the subgraph as each of the vocabulary
structures x, we employ MDL to choose the representation
with the minimum (local) encoding cost, and add the structure
to the candidate set, C. Finally, we associate the candidate
structure with its encoding benefit: the savings in bits for
encoding the subgraph by the minimum-cost structure type,
instead of leaving its edges unmodeled and including them in
the error matrix.

4.3 Step 3: Summary Assembly. Given a set of candidate
structures, C, how can we efficiently induce the model M that
is the best graph summary? The exact selection algorithm,
which considers all the possible ordered combinations of the
candidate structures and chooses the one that minimizes cost,
is combinatorial, and cannot be applied to any non-trivial
candidate set. Thus, we need heuristics that will give a fast,
approximate solution to the description problem. To reduce
the search space of all possible permutations, we attach to
each candidate structure a quality measure, and consider them
in order of decreasing quality. The measure that we use is the
encoding benefit of the subgraph, i.e., the number of bits that
are gained by encoding the subgraph as structure x instead of
noise. Our constituent heuristics are:

PLAIN: The baseline approach gives as graph summary all
the candidate structures, i.e., M = C.

TOP-K: Selects the top k candidate structures, which are
sorted in decreasing quality.

GREEDY’NFORGET: Considers each structure in C sequen-
tially, and includes it in M : if the graph’s encoding cost does
not increase, then it keeps the structure in M ; otherwise it
removes it. Note that this heuristic is computationally de-
manding, and works better for small and medium-sized set of
candidate structures.

VOG employs all the heuristics and picks the best graph
summarization, i.e., with the minimum description cost.

Table 2: [Lower is better.] Quantitative analysis of VOG with different heuristics: PLAIN, TOP10, TOP100, and GREEDY’NFORGET. The
first column, ORIGINAL, presents the cost, in bits, of encoding the adjacency matrix with an empty model M . For different heuristics we
show the relative number of bits needed to describe the adjacency matrix. In parentheses, precursored by ‘u.e.’ (for unexplained edges) we
give the fraction of edges that are not explained by the structures in the model, M . The lowest description cost is in bold.

Graph ORIGINAL
VOG

(bits) PLAIN TOP10 TOP100 GREEDY’NFORGET

Flickr 35 210 972 81% (u.e.: 4%) 99% (u.e.: 72%) 97% (u.e.: 39%) 95% (u.e.: 36%)
WWW-Barabasi 18 546 330 81% (u.e.: 3%) 98% (u.e.: 62%) 96% (u.e.: 51%) 85% (u.e.: 38%)
Epinions 5 775 964 82% (u.e.: 6%) 98% (u.e.: 65%) 95% (u.e.: 46%) 81% (u.e.: 14%)
Enron 4 292 729 75% (u.e.: 2%) 98% (u.e.: 77%) 93% (u.e.: 46%) 75% (u.e.: 6%)
AS-Oregon 475 912 72% (u.e.: 4%) 87% (u.e.: 59%) 79% (u.e.: 25%) 71% (u.e.: 12%)
Chocolate 60 310 96% (u.e.: 4%) 96% (u.e.: 70%) 93% (u.e.: 35%) 88% (u.e.: 27%)
Controversy 19 833 98% (u.e.: 5%) 94% (u.e.: 51%) 96% (u.e.: 12%) 87% (u.e.: 31%)

5 Experiments
In this section, we aim to answer the following questions:
Q1. Are the real graphs structured, or random and noisy?
Q2. What structures do the graph summaries consist of, and
how can they be used for understanding?
Q3. Is VOG scalable?

Table 3: Summary of graphs used.

Name Nodes Edges Description

Flickr [3] 404 733 2 110 078 Friendship social network
WWW-Barabasi [4] 325 729 1 090 108 WWW in nd.edu
Epinions [4] 75 888 405 740 Trust graph
Enron [2] 80 163 288 364 Enron email
AS-Oregon [1] 13 579 37 448 Router connections
Controversy 1 005 2 123 Co-edit graph
Chocolate 2 899 5 467 Co-edit graph

The graphs we use in the experiments along with their
descriptions are summarized in Table 3. Controversy is
a co-editor graph on a known Wikipedia controversial topic
(name withheld for obvious reasons), where the nodes are
users and edges mean that they edited the same sentence.
Chocolate is a co-editor graph on the ‘Chocolate’ article.
The descriptions of the other datasets are given in Table 3.

Graph Decomposition. In our experiments, we use SLASH-
BURN [16] to generate candidate subgraphs, because it is
scalable, and designed to handle graphs without “cavemen”
structure. Details about the algorithm are given in the Ap-
pendix. We note that VOG would only benefit from using the
outputs of additional decomposition algorithms.

5.1 Q1: Quantitative Analysis In this section we apply
VOG to the real datasets of Table 3, and evaluate the achieved
description cost, and edge coverage, which are indicators of
the discovered structures. The evaluation is done in terms of
savings w.r.t. the base encoding (ORIGINAL) of the adjacency
matrix of a graph with an empty model M .

Although we refer to the description cost of the summa-
rization techniques, we note that compression itself is not our
goal, but our means for identifying structures important for
graph understanding or attention routing. This is also why

we do not compare against standard matrix compression tech-
niques. Whereas VOG has the goal of describing a graph with
intelligible structures, specialized algorithms may exploit any
statistical correlations to save bits.

We compare two summarization approaches: (a) ORIGI-
NAL: The whole adjacency matrix is encoded as if it contains
no structure; that is, M = ∅, all of A is encoded through
L(E−); and (b) VOG, our proposed summarization algo-
rithm with the three selection heuristics (PLAIN, TOP10 and
TOP100, GREEDY’NFORGET). For efficiency, for Flickr
and WWW-Barabasi, GREEDY’NFORGET considers the top
500 candidate structures. We note that we ignore very small
structures; the candidate set C includes subgraphs with at
least 10 nodes, except for the Wikipedia graphs where the
size threshold is set to 3 nodes. Among the summaries ob-
tained by the different heuristics, we choose the one that
yields the smallest description length.

Table 2 presents the summarization cost of each tech-
nique w.r.t. the cost of the ORIGINAL approach, as well as
the fraction of the edges that remains unexplained. The lower
the ratios (i.e., the lower the obtained description length), the
more structure is identified. For example, VOG-PLAIN de-
scribes Flickr with only 81% of the bits of the ORIGINAL
approach, and explains all but 4% of the edges, which means
that 4% of the edges are not encoded by the structures in M .

OBSERVATION 1. Real graphs do have structure; VOG, with
or w/o structure selection, achieves better compression than
the ORIGINAL approach that assumes no structure.

GREEDY’NFORGET finds models M with fewer struc-
tures than PLAIN and TOP100, yet generally obtains (much)
succinct graph descriptions. This is due to its ability to iden-
tify structures that are informative with regard to what it
already knows. In other words, structures that highly overlap
with ones already selected into M will be much less rewarded
than structures that explain unexplored parts of the graph.

5.2 Q2: Qualitative Analysis In this section, we show-
case how to use VOG and interpret its output.

Table 4: Summarization of graphs by VOG (for different heuristics). The most frequent structures are the stars (st) and near-bipartite cores
(nb). For each graph and selection technique (heuristic), we provide the frequency of each structure type: ‘st’ for star, ‘nb’ for near-bipartite
cores, ‘fc’ for full cliques, ‘fb’ for full bipartite-cores, ‘ch’ for chains, and ‘nc’ for near-cliques.

PLAIN TOP10 TOP100 GREEDY’NFORGET

Graph st nb fc fb ch nc st nb st nb fb ch st nb fc fb

Flickr 24 385 3 750 281 9 - 3 10 - 99 1 - - 415 - - 1
WWW-Barabasi 10 027 1 684 487 120 26 - 9 1 83 14 3 - 403 7 - 16
Epinions 5 204 528 13 - - - 9 1 99 1 - - 2 738 - 8 -
Enron 3 171 178 3 11 - - 9 1 99 1 - - 2 323 3 3 2
AS-Oregon 489 85 - 4 - - 10 - 93 6 1 - 399 - - -
Chocolate 170 58 - - 17 - 9 1 87 10 - 3 101 - - -
Controversy 73 21 - 1 22 - 8 2 66 17 1 16 35 - - -

5.2.1 Graph Summaries How does VOG summarize real
graphs? Which are the most frequent structures? Table 4
shows the summarization results of VOG for different struc-
ture selection techniques.

OBSERVATION 2. The summaries of all the selection heuris-
tics consist mainly of stars, followed by near-bipartite cores.
In some graphs, like Flickr and WWW-Barabasi, there
is a significant number of full cliques.

From Table 4 we also observe that GREEDY’NFORGET
drops uninteresting structures, and reduces the graph sum-
mary. Effectively, it filters out the structures that explain
edges already explained by structures in model M .

5.2.2 Graph Understanding Are the ‘important’ struc-
tures found by VOG semantically meaningful? For sense-
making, we analyze the discovered subgraphs in the non-
anonymized real datasets Controversy, and Enron.

Wikipedia–Controversy. Figs. 1 and 3(a-b) illus-
trate the original and VOG-based visualization of the
Controversy graph. The VOG-TOP10 summary consists
of 8 stars and 2 near-bipartite cores (see also Table 4). The
8 star configurations correspond mainly to administrators,
such as “Future Perfect at sunrise”, who do many minor ed-
its and revert vandalisms. The most interesting structures
VOG identifies are the near-bipartite cores, which reflect: (a)
the conflict between the two parties, and (b) an “edit war”
between vandals and administrators or loyal Wikipedia users.

In Fig. 3c, the encoding cost of VOG is given as a
function of the selected structures. The dotted blue line
corresponds to the cost of the PLAIN encoding, where
the structures are added sequentially in the model M , in
decreasing order of quality (local encoding benefit). The
solid red line maps to the cost of the GREEDY’NFORGET
heuristic. Given that the goal is to summarize the graph in the
most succinct way, and at the same time achieve low encoding
cost, GREEDY’NFORGET is effective.

Enron. The TOP10 summary for Enron has nine stars
and one near-bipartite core. The centers of the most infor-
mative stars are mainly high ranking officials (e.g., Kenneth
Lay with two email accounts, Jeff Skilling, Tracey Kozadi-

nos). As a note, Kenneth Lay was long-time Enron CEO,
while Jeff Skilling had several high-ranking positions in the
company, including CEO and managing director of Enron
Capital & Trade Resources. The near-bipartite core in Fig. 4
is loosely connected to the rest of the graph, and represents
the email communication about an extramarital affair, which
was broadcast to 235 recipients.

Figure 4: Enron: Adjacency matrix of the top nb core found by
VOG, corresponding to email communication about an “affair”.

The VOG summary for Chocolate is equally interest-
ing, but not shown here do to lack of space (see the Appendix).

5.3 Q3: Scalability of VOG In Fig. 5, we present the
runtime of VOG with respect to the number of edges in the
input graph. For this purpose, we induce subgraphs of Notre
Dame dataset (WWW-Barabasi) for which we give the
dimensions in Table 5. We ran the experiments on a Intel(R)
Xeon(R) CPU 5160 at 3.00GHz, with 16GB memory. The
structure identification is implemented in Matlab, while the
selection process in Python. A discussion about the runtime
of VOG is also given in the supplementary material.

OBSERVATION 3. All the steps of VOG are designed to be
scalable. Fig. 5 shows the complexity is O(m), i.e., VOG is
near-linear on the number of edges of the input graph.

Table 5: Scalability: Induced subgraphs of WWW-Barabasi.

Name Nodes Edges

WWW-Barabasi-50k 49 780 50 624
WWW-Barabasi-100k 99 854 205 432
WWW-Barabasi-200k 200 155 810 950
WWW-Barabasi-300k 325 729 1 090 108

6 Discussion
The experiments show that VOG successfully solves an
important open problem in graph understanding: how to find

(a) VOG: The 8 top “im-
portant” stars whose cen-
ters are denoted with red
rectangles.

(b) VOG: The most “impor-
tant” bipartite graph (node
set A denoted by the circle
of red points).

(c) Effectiveness of GREEDY’NFORGET (in red). En-
coding cost of VOG vs. number of structures in the
model, M .

Figure 3: The VOG summary of the Controversy graph, and effectiveness of the GREEDY’NFORGET heuristic. The top 10 structures
of the graph summary of VOG consist of 8 stars (Fig. 3a) and 2 bipartite graphs (Fig. 3b, 1d). Fig. 3c shows the encoding cost for the
PLAIN (dotted blue line) and GREEDY’NFORGET (solid red line) heuristics. GREEDY’NFORGET minimizes the encoding cost by greedily
selecting from a sorted, in decreasing quality order, set of structures the ones that reduce the cost. Thus, GREEDY’NFORGET leads to better
encoding costs and smaller summaries (here only 40 are chosen) than PLAIN (∼120 structures).

Figure 5: VOG is near-linear on the number of edges. Runtime,
in seconds, of VOG (PLAIN) vs. number of edges in graph. For
reference we show the linear and quadratic slopes.

a succinct summary for a large graph. Here we address some
questions, that a reader may have.
Q1: Why does VOG use the chosen vocabulary structures
(stars, cliques, etc), and not other structures?
A1: We noticed that these structures appear very often, in tens
of real graphs, (e.g. in patent citation network, in phone-call
networks, in netflix recommendation system, etc).
Q2: What if a new structure (say, ‘loops’), proves to be
frequent in real graphs?
A2: VOG can easily be extended to handle new vocabulary
terms. In fact, MDL will immediately tell us whether a
vocabulary set V1 is better than a vocabulary set V2: the
one that gives best compression wins!
Q3: Why not determine automatically which ‘vocabulary
terms’ are best for a given graph?
A3: Scalability. Spotting frequent subgraphs has the
notoriously-expensive subgraph isomorphism problem in the
inner loop. Published algorithms on frequent subgraphs
(e.g., [34]), are not applicable here, since they expect the
nodes to have labels (e.g., carbon atom, oxygen atom etc.).
Q4: Why would you focus on compression, since your goal
is pattern discovery and understanding?
A4: Compression is not our goal; it is only our means to help
us find good patterns. High compression ratios are exactly

a sign that we discovered many redundancies (i.e., patterns)
which can be explained in simple terms (i.e., structures), and
thus, we understand the input graph better.

7 Related Work
Work related to VOG comprises the following areas:

MDL for Non-Graph Data. The MDL principle [28]
and compression [13] are related to summarization and pat-
tern discovery (e.g., clustering [10], pattern set mining [33]).

Graph Compression. This includes lexicographic-
based compression for web [6], and social networks [9];
BFS-based techniques [5]; multi-position linearizations for
neighborhood queries [22]; exploitation of the power-laws in
real graphs [20] and structural equivalence [32]; attribute-
based, non-overlapping and covering node grouping [31,
35]. None of these works summarize in terms of local
structures. Also, compression is not our goal, but our means
to understanding the graph, by finding informative structures.

Graph Partitioning. Assuming away the ‘no good
cut’ issue, there are countless graph partitioning algo-
rithms: SUBDUE [11], a frequent subgraph mining al-
gorithm for lossy summaries of attributed graphs; itera-
tive, non-overlapping grouping of nodes with high inter-
connectivity [25]; MDL-based Boolean matrix factorization
for mining full cliques [23]; cross-association for near cliques
and bi-partite cores. [7], or hierarchies [26]; information-
theoretic approaches for community detection [29].

What sets VOG apart: None of the above methods
meet all the following specifications (which VOG does):
(a) gives a soft clustering, (b) is scalable, (c) has a large
vocabulary of graph primitives (beyond cliques/cavemen-
graphs) and (d) is parameter-free.

8 Conclusion
We studied the problem of succinctly describing a large graph
in terms of connectivity structures. Our contributions are:

• Problem Formulation: We proposed an information the-
oretic graph summarization technique that uses a carefully
chosen vocabulary of graph primitives (Sec. 3).

• Effective and Scalable Algorithm: We gave VOG, an
effective method which is near-linear on the number of
edges of the input graph (Sec. 5.3).

• Experiments on Real Graphs: We discussed interesting
findings like exchanges between Wikipedia vandals and
responsible editors on large graphs (Sec. 1, 5).

Acknowledgments
The authors would like to thank Niki Kittur and Jeffrey Rzeszotarski
for sharing the Wikipedia datasets. JV is supported by the Cluster
of Excellence “Multimodal Computing and Interaction” within the
Excellence Initiative of the German Federal Government. Funding
was provided by the U.S. ARO and DARPA under Contract Number
W911NF-11-C-0088, by DTRA under contract No. HDTRA1-10-
1-0120, by the National Science Foundation under Grant No. IIS-
1217559, by ARL under Cooperative Agreement Number W911NF-
09-2-0053, and by KAIST under project number G0413002. The
views and conclusions are those of the authors and should not
be interpreted as representing the official policies, of the U.S.
Government, or other funding parties, and no official endorsement
should be inferred. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding
any copyright notation here on.

References

[1] As-oregon dataset. http://topology.eecs.umich.edu/data.html.
[2] Enron dataset. http://www.cs.cmu.edu/ enron.
[3] Flickr. http://www.flickr.com.
[4] Snap. http://snap.stanford.edu/data/index.html.
[5] A. Apostolico and G. Drovandi. Graph compression by bfs.

Algorithms, 2(3):1031–1044, 2009.
[6] P. Boldi and S. Vigna. The webgraph framework i: compres-

sion techniques. In WWW, 2004.
[7] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Falout-

sos. Fully automatic cross-associations. In KDD, pages 79–88,
2004.

[8] D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos, and
G. Blelloch. Netmine: New mining tools for large graphs. In
SDM Workshop on Link Anal., Count. Terror. and Priv., 2004.

[9] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher,
A. Panconesi, and P. Raghavan. On compressing social
networks. In KDD, pages 219–228, 2009.

[10] R. Cilibrasi and P. Vitányi. Clustering by compression. IEEE
TIT, 51(4):1523–1545, 2005.

[11] D. J. Cook and L. B. Holder. Substructure discovery using
minimum description length and background knowledge.
JAIR, 1:231–255, 1994.

[12] T. M. Cover and J. A. Thomas. Elements of Information
Theory. Wiley-Interscience New York, 2006.

[13] C. Faloutsos and V. Megalooikonomou. On data mining,
compression and Kolmogorov complexity. In Data Min.
Knowl. Disc., volume 15, pages 3–20. Springer-Verlag, 2007.

[14] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. In SIGCOMM, pages
251–262, 1999.

[15] T. Kamada and S. Kawai. An algorithm for drawing general
undirected graphs. IPL, 31:7–15, 1989.

[16] U. Kang and C. Faloutsos. Beyond ‘caveman communities’:
Hubs and spokes for graph compression and mining. In ICDM,
2011.

[17] G. Karypis and V. Kumar. Multilevel -way hypergraph
partitioning. In DAC, pages 343–348, 1999.

[18] J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. The web as a graph: Measurements, models and
methods. In COCOON, 1999.

[19] D. Koutra, T.-Y. Ke, U. Kang, D. H. Chau, H.-K. K. Pao,
and C. Faloutsos. Unifying guilt-by-association approaches:
Theorems and fast algorithms. In ECML PKDD, pages 245–
260, 2011.

[20] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Statistical properties of community structure in large social
and information networks. In WWW, pages 695–704, 2008.

[21] M. Li and P. Vitányi. An Introduction to Kolmogorov
Complexity and its Applications. Springer, 1993.

[22] H. Maserrat and J. Pei. Neighbor query friendly compression
of social networks. In KDD, 2010.

[23] P. Miettinen and J. Vreeken. Model order selection for
Boolean matrix factorization. In KDD, pages 51–59, 2011.

[24] P. Miettinen and J. Vreeken. MDL4BMF: Minimum Descrip-
tion Length for Boolean matrix factorization. Technical Report
MPI-I-2012-5-001, MPI-Inf, 2012.

[25] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summa-
rization with bounded error. In SIGMOD, pages 419–432,
2008.

[26] S. Papadimitriou, J. Sun, C. Faloutsos, and P. S. Yu. Hierarchi-
cal, parameter-free community discovery. In ECML PKDD,
2008.

[27] B. A. Prakash, M. Seshadri, A. Sridharan, S. Machiraju,
and C. Faloutsos. Eigenspokes: Surprising patterns and
community structure in large graphs. PAKDD, 2010.

[28] J. Rissanen. Modeling by shortest data description. Annals
Stat., 11(2):416–431, 1983.

[29] M. Rosvall and C. T. Bergstrom. An information-theoretic
framework for resolving community structure in complex
networks. PNAS, 104(18):7327–7331, 2007.

[30] L. Tauro, C. Palmer, G. Siganos, and M. Faloutsos. A simple
conceptual model for the internet topology. Globecom, 2001.

[31] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation
for graph summarization. In SIGMOD, pages 567–580, 2008.

[32] H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka. Com-
pression of weighted graphs. In KDD, pages 965–973, 2011.

[33] J. Vreeken, M. van Leeuwen, and A. Siebes. KRIMP: Mining
itemsets that compress. Data Min. Knowl. Disc., 23(1):169–
214, 2011.

[34] X. Yan and J. Han. gspan: Graph-based substructure pattern
mining. In ICDM, pages 721–724, 2002.

[35] N. Zhang, Y. Tian, and J. M. Patel. Discovery-driven graph
summarization. In ICDE, pages 880–891, 2010.

A SlashBurn: Details
SLASHBURN is an algorithm for node reordering so that the
resulting adjacency matrix has clusters/patches of non-zero
elements. The idea is that removing the top high-degree
nodes in real world graphs results in the generation of many
small-sized disconnected components (subgraphs), and one
giant connected component whose size is significantly smaller
compared to the original graph. Specifically, SLASHBURN
performs two steps iteratively: (a) It removes top high degree
nodes from the original graph; (b) It reorders the nodes so
that the high-degree nodes go to the front, disconnected
components to back, and the giant connected component
to the middle. During the next iterations, these steps are
performed on the giant connected component.

In this paper, SLASHBURN is used to decompose graphs,
and MDL is used to select an appropriate model to encode
the subgraphs.

B Toy Example
To illustrate how VOG works, we give an example on a toy
graph; we apply VOG on the synthetic Cavemen graph of
841 nodes and 7547 edges, which as shown in Fig. 6 consists
of two cliques separated by two stars. The leftmost and
rightmost cliques consist of 42, and 110 nodes respectively;
the big star (2nd structure) has 800 nodes, and the small star
(3rd structure) 91 nodes.

The raw output of the decomposition algorithm (step 1)
consists of the subgraphs corresponding to the stars, the full
left-hand and right-hand cliques, as well as subsets of these
nodes. Through MDL, VOG first correctly identifies the type
of these structures (step 2), and through GREEDY’NFORGET
it automatically finds the true 4 structures without redundancy
(step 3). The corresponding model requires 36% fewer bits
than the ‘empty’ model. We note that one bit gain already
corresponds to twice the likelihood.

Figure 6: Toy graph for sanity check: VOG saves 36% in space,
by successfully discovering the two cliques and two stars that we
chained together.

C Time Complexity of VOG
For a graph G(V, E) of n = |V| nodes and m = |E|
edges, the time complexity of VOG depends on the runtime

complexity of the algorithms that compose it, namely the
decomposition algorithm, the subgraph labeling, the encoding
scheme L(G,M) of the model, and the structure selection
(summary assembly).

For the decomposition of the graph, we use SLASHBURN
which is near-linear on the number of edges of real graphs
[16]. The subgraph labeling algorithms in Sec. 4 are carefully
designed to be linear in the number of edges of the input
subgraph.

When there is no overlap between the structures in M ,
the complexity of calculating the encoding scheme L(G,M)
is O(m). When there is overlap, the complexity is bigger:
assume that s, t are two structures ∈ M with overlap, and t
has higher quality than s, i.e., t comes before s in the ordered
list of structures. Finding how much ‘new’ structure (or area
in A) s explains relative to t costs O(|M |2). Thus, in the case
of overlapping subgraphs, the complexity of computing the
encoding scheme is O(|M |2 + m). As typically |M | � m,
in practice we have O(m).

As far as the selection method is concerned, the TOP-
K heuristic that we propose has complexity O(k). The
GREEDY’NFORGET heuristic has runtime O(|C| × o×m),
where |C| is the number of structures identified by VOG, and
o the time complexity of L(G,M).

D Qualitative Analysis of VOG
In addition to the analysis of Controversy and Enron in
Sec. 5.2.1, we present qualitative results on the Chocolate
dataset.

Wikipedia–Chocolate. The visualization of Wikipedia-
choc is similar to Fig. 3 and is omitted. As shown in Table
4, the TOP10 summary of Chocolate contains 9 stars and
1 near-bipartite core. The center of the highest ranked star
corresponds to “Chobot”, a Wikipedia bot that fixes inter-
language links, and thus touches several, possibly unrelated
parts of a page. Other stars have as hubs administrators, who
do many minor edits, as well as heavy contributors. The
near-bipartite core captures the interactions between possi-
ble vandals and administrators (or Wikipedia contributors)
who were reverting each other’s edits resulting to temporary
(semi-) protection of the webpage.

	Introduction
	Proposed Method: Overview and Motivation
	Problem Formulation
	MDL for Graph Summarization.
	Encoding the Model.
	Encoding the Error.

	VoG: Summarization Algorithm
	Step 1: Subgraph Generation.
	Step 2: Subgraph Labeling.
	Step 3: Summary Assembly.

	Experiments
	 Q1: Quantitative Analysis
	 Q2: Qualitative Analysis
	Graph Summaries
	Graph Understanding

	 Q3: Scalability of VoG

	Discussion
	Related Work
	Conclusion
	SlashBurn: Details
	Toy Example
	Time Complexity of VoG
	Qualitative Analysis of VoG

