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Preface 

 

Data, data everywhere; massive datasets of previously unthinkable sizes, surpassing terabytes and 

petabytes, have quickly become commonplace. They arise in numerous settings in science, 

government, and enterprises. While technology exists by which we can collect and store such 

massive amounts of information, making sense of these data remains a fundamental challenge. In 

particular, we lack the means to exploratively analyze databases of this scale. Currently, 

surprisingly few technologies allow us to freely “wander” around the data, and make discoveries by 

following our intuition, or serendipity. While standard data mining aims at finding highly 

interesting results, it is typically computationally demanding and time consuming, thus may not be 

well-suited for interactive exploration of large datasets.  

Interactive data mining techniques that aptly integrate human intuition, by means of visualization 

and intuitive human-computer interaction techniques, and machine computation support have 

been shown to help people gain significant insights into a wide range of problems. However, as 

datasets are being generated in larger volumes, higher velocity, and greater variety, creating 

effective interactive data mining techniques becomes an increasingly harder task.  

It is exactly this research, experiences and practices that we aim to discuss at IDEA, the workshop 

on Interactive Data Exploration and Analytics. In a nutshell, IDEA addresses the development of 

data mining techniques that allow users to interactively explore their data. We focus and emphasize 

on interactivity and effective integration of techniques from data mining, visualization and 

human-computer interaction. In other words, we explore how the best of these different but 

related domains can be combined such that the sum is greater than the parts.  

Following the great success of IDEA at KDD 2013, the main program of IDEA’14 consists of sixteen 

papers covering various aspects of interactive data exploration and analytics. Nine papers were 

accepted for oral presentation, with eight more selected for poster presentation with accompanying 

interactive demos. These papers were selected from a total of 23 submissions after a thorough 

reviewing process. We sincerely thank the authors of the submissions and the attendees of the 

workshop. We wish to thank the members of our program committee for their help in selecting a 

set of high-quality papers. Furthermore, we are very grateful to Ben Shneiderman and Aditya 

Parameswaran for engaging keynote presentations on the fundamental aspects of interactive data 

exploration and visualization. 

Polo Chau & Jilles Vreeken & Matthijs van Leeuwen & Christos Faloutsos 

Saarbrücken, July 2014  
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Invited Talk 

 

Information Visualization for Knowledge Discovery: 
Big Insights from Big Data 

 
 

Ben Shneiderman 
Human Computer Interaction Lab 

University of Maryland, College Park  
ben@cs.umd.edu 

 
 

Abstract 
Interactive information visualization tools provide researchers with remarkable capabilities to 
support discovery from Big Data resources. Users can begin with an overview, zoom in on areas of 
interest, filter out unwanted items, and then click for details-on-demand. The Big Data initiatives 
and commercial success stories such as Spotfire and Tableau, plus widespread use by prominent 
sites such as the New York Times have made visualization a key technology.  

The central theme is the integration of statistics with visualization to support user discovery. Our 
work focuses on temporal event sequences such as found in electronic health records 
(www.cs.umd.edu/hcil/eventflow), and social network data such a twitter discussion patterns 
(www.codeplex.com/nodexl). The talk closes with 8 Golden Rules for Big Data. 

Bio 
Ben Shneiderman is a Distinguished University Professor in the Department of Computer Science 
and Founding Director (1983-2000) of the Human-Computer Interaction Laboratory at the 
University of Maryland. He is a Fellow of the AAAS, ACM, and IEEE, and a Member of the National 
Academy of Engineering, in recognition of his pioneering contributions to human-computer 
interaction and information visualization. His contributions include the direct manipulation 
concept, clickable web-link, touchscreen keyboards, and dynamic query sliders for Spotfire, 
development of treemaps, innovative network visualization strategies for NodeXL, and temporal 
event sequence analysis for electronic health records.  

Ben is the co-author with Catherine Plaisant of Designing the User Interface: Strategies for Effective 
Human-Computer Interaction (5th ed., 2010). With Stu Card and Jock Mackinlay, he co-authored 
Readings in Information Visualization: Using Vision to Think (1999). His book Leonardo’s Laptop 
appeared in October 2002 (MIT Press) and won the IEEE book award for Distinguished Literary 
Contribution. His latest book, with Derek Hansen and Marc Smith, is Analyzing Social Media 
Networks with NodeXL (2010). 
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Invited Talk  

 

Human-Powered and Visual Data Management 
 
 

Aditya Parameswaran 
Department of Computer Science 

University of Illinois (UIUC) 
adityagp@illinois.edu 

 
 

Abstract 
This talk will consist of two parts. The first part will be on an ongoing project: Fully automated 
algorithms are inadequate for many data analysis tasks, especially those involving images, video, or 
text. Thus, we need to combine crowdsourcing with traditional computation, to improve the 
process of understanding, extracting and managing data. In this part, I will present a broad 
perspective of our research on this topic. I will then present details of one of the problems we have 
addressed: filtering large data sets with the aid of humans. For more details, see: 
i.stanford.edu/~adityagp/scoop.html 

The second part will be on a project that is just starting off: Data scientists rely on visualizations to 
interpret the data returned by queries, but finding the right visualization remains a manual task 
that is often laborious. We propose a system that partially automates the task of finding the right 
visualizations for a query. The output will comprise a recommendation of potentially "interesting" 
or "useful" visualizations, where each visualization is coupled with a suitable query execution plan. 
I will discuss the technical challenges in building this system and preliminary results, and outline 
an agenda for future research. For more details, see http://goo.gl/FHZY61 (to appear at VLDB '14) 

Bio 
Aditya Parameswaran is an Assistant Professor in Computer Science at the University of Illinois 
(UIUC). He is currently spending the year visiting MIT CSAIL, after completing his Ph.D. from 
Stanford University in Sept. 2013, advised by Prof. Hector Garcia-Molina. He is broadly interested 
in data analytics, with research results in human computation, visual analytics, information 
extraction and integration, and recommender systems. Aditya is a recipient of the Arthur Samuel 
award for the best dissertation in Computer Science at Stanford (2013), the SIGMOD Jim Gray 
dissertation award (2014), the Key Scientific Challenges Award from Yahoo! Research (2010), two 
best-of-conference citations (VLDB 2010 and KDD 2012), the Terry Groswith graduate fellowship 
at Stanford (2007), and the Gold Medal in Computer Science at IIT Bombay (2007). 
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VizLinc: Integrating information extraction, search, graph
analysis, and geo-location for the visual exploration of

large data sets ∗

Joel C. Acevedo-Aviles, William M. Campbell, Daniel C. Halbert, Kara Greenfield
MIT Lincoln Laboratory, Human Language Technology Group, Lexington, MA, USA

{joel, wcampbell, daniel.halbert, kara.greenfield}@ll.mit.edu

ABSTRACT
In this demo paper we introduce VizLinc; an open-source
software suite that integrates automatic information extrac-
tion, search, graph analysis, and geo-location for interactive
visualization and exploration of large data sets. VizLinc
helps users in: 1) understanding the type of information
the data set under study might contain, 2) finding patterns
and connections between entities, and 3) narrowing down
the corpus to a small fraction of relevant documents that
users can quickly read. We apply the tools offered by Vi-
zLinc to a subset of the New York Times Annotated Corpus
and present use cases that demonstrate VizLinc’s search and
visualization features.

Keywords
VizLinc, visualization, visual analytics, graph analysis, data
exploration, information extraction, search, geo-location

1. INTRODUCTION
Information extraction refers to the task of automatically

extracting structured information from unstructured docu-
ments. Sub-tasks like named entity, relationship, and ter-
minology extraction are extremely useful to characterize the
content of large text corpora and give data analysts a sense
of what information might be present in such corpora. For
many applications, characterizing individual documents is
not enough. Linking relevant information across documents
is the key to harnessing the informative power of a large
heterogeneous corpus.
In this paper we introduce VizLinc; an open-source soft-

ware suite that integrates automatic information extraction,
search, graph analysis, and geo-location for interactive visu-
alization and exploration of large data sets. VizLinc helps
users in: 1) understanding the type of information the data
set under study might contain, 2) finding patterns and con-
nections between entities, and 3) narrowing down the cor-
pus to a small fraction of relevant documents that users
can quickly read. VizLinc is self-contained, does not re-
quire connections to online components, and scales to tens
of thousands of documents. All software is publicly available
through GitHub.1

∗This work was sponsored by the Defense Advanced Re-
search Projects Agency under Air Force Contract FA8721-
05-C-0002. Opinions, interpretations, conclusions, and rec-
ommendations are those of the authors and are not neces-
sarily endorsed by the United States Government.
1https://github.com/mitll/vizlinc

According to the survey presented in [11] a large num-
ber of data analysis and visualization tools are available for
analyzing structured data, but tools for modeling and visu-
alizing semi- or unstructured data are still underrepresented.
Commercial visual analytics (VA) systems such as Tableau2

and Spotfire Desktop3 are designed to connect to a variety
of structured data sources. VizLinc, on the other hand, is
designed with the purpose of characterizing and exploring
large collections of unstructured documents. Like Visual
Analytics4 and Centrifuge5, VizLinc uses graph modeling
techniques to represent relationships between data items; a
feature not present in most of the systems studied in [11].
Palantir 6 features a super set of the main visualizations
that VizLinc uses (geographical map and network) and it is
also suitable for unstructured data.[10] VizLinc, however, is
an extensible open-source, and free software suite whereas
Palantir is a commercial product. Contrary to most open-
source and commercial VA tools, VizLinc does not offer the
uni-variate or bi-variate statistical analysis tools often found
in software of its kind.[4][11] This is something that will be
addressed in future releases.

The rest of this paper is organized as follows. Sections 2
and 3 present an overview of the main components of the
VizLinc software suite and the technology used to implement
it. Sections 4 to 6, offer a look into VizLinc’s features and
usage. Lastly, we apply our techniques to a data set and
present use cases to demonstrate VizLinc’s capabilities in
section 7.

2. SYSTEM OVERVIEW
VizLinc is a software suite composed of two main applica-

tions: the Ingestion Tool and the User Interface (UI). The
Ingestion Tool takes a set of documents as input, extracts in-
formation from unstructured text, and stores the extracted
information in the format that the UI needs to allow users to
search, visualize, and explore the documents’ content. The
process of converting the input documents into information-
rich data structures, or simply the ingestion process, will
be covered in detail in section 3. For now, it suffices to
say that data ingestion is carried out entirely by the In-

https://github.com/mitll/vizlinc db
https://github.com/mitll/vizlinc ingester
2http://www.tableausoftware.com/
3http://spotfire.tibco.com/discover-spotfire/spotfire-
overview/spotfire-desktop
4http://www.visualanalytics.com/
5http://centrifugesystems.com/
6http://www.palantir.com/
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Figure 1: VizLinc main components. The Inges-
tion Tool processes text in a variety of formats and
produces the metadata the UI requires as input for
search and visualization.

gestion Tool in two major stages: Information Extraction
and Metadata Generation. During Information Extraction,
mentions of people, locations, and organizations are iden-
tified in text. Once identified, locations are geo-coded and
people are linked based on their co-occurrence patterns in
the data set. In addition, the text is indexed for search and
retrieval. The metadata generation step takes the extracted
information and stores it in an H27 relational database, a
GraphML8 graph file, and a Lucene9 index. The UI takes
the database, graph file, and index as inputs and presents a
graphical user interface for interactive visualization and ex-
ploration of the original data set. For the rest of this paper,
we will refer to the UI simply as VizLinc. Figure 1 depicts
the interaction between the aforementioned components.
The Ingestion Tool is written in the Groovy programming

language. Groovy is an agile and dynamic language for the
Java Virtual Machine10. The graph database we use for
data ingestion has a robust implementation in Groovy thus
making it an ideal choice for the Ingestion Tool. For ease
of use, we have developed a graphical user interface in Java
Swing that calls the appropriate Groovy classes as needed.
As the reader probably inferred by this point, the UI is

written in the Java programming language. Specifically, the
UI is a Gephi 11 plugin. Gephi is an interactive visualization
and exploration platform for large graphs [1] and powers all
graph-related features in the UI. Gephi, in turn, is based
on the Netbeans Platform12, a generic framework for rapid
development of Java Swing applications. One of the key
distinctions of software built upon the NetBeans Platform
is modularity [2]. This distinction made the integration of
VizLinc’s UI with Gephi a seamless one. For the rest of this
paper, we will refer to the UI component simply as VizLinc.

3. DATA INGESTION
7http://www.h2database.com/
8http://graphml.graphdrawing.org/
9http://lucene.apache.org/

10http://groovy.codehaus.org/
11http://gephi.org/
12https://netbeans.org/features/platform/

Data ingestion refers to the sequence of processing steps
that generate the necessary metadata for later visualization
and exploration in VizLinc. Figure 2 shows what these steps
are and the order in which they are executed.

Figure 2: The data ingestion process.

VizLinc admits text in a variety of formats including Mi-
crosoft Office formats(.docx, .doc, .xls, ...), Portable Doc-
ument Format (PDF) and HyperText Markup Language
(HTML).13 For this reason, the first step in the ingestion
pipeline is extracting the text contained in the input docu-
ments. We use the tools provided by Apache Tika14 for this
purpose. Other content, such as images, is ignored.

Once text is extracted, we perform named entity recog-
nition on each document using the Stanford NER [3] recog-
nizer. During this step named entities, specifically people,
locations, and organizations, are identified and extracted.
Each instance of an entity in a text is called a mention.
All mentions, information about the documents in which
they appear, and their positions within those documents
are stored in a Neo4j 15 graph database. The need to store
and retrieve links between the metadata that will be gener-
ated in subsequent steps, makes this data representation an
intuitive and efficient one for our purposes [7]. The graph
database is augmented as ingestion progresses and, by the
end of the pipeline, stores the results of all the steps per-
formed during this process.

Mentions can have different forms yet refer to the same en-
tity. For instance, the person entity John Fitzgerald Kennedy
might be referred to as “John F. Kennedy”, “Kennedy”, and
“JFK”. VizLinc aims at discovering interesting patterns in
text by unveiling connections between the entities mentioned.
To this end, it is critical to find all the mentions of an en-
tity both within a document and across documents in the
corpus. The task of finding all expressions that refer to the
same entity is denominated coreference resolution and is the
goal of the fourth step in the ingestion pipeline. In VizLinc,
approximate string matching and a simple set of rules are
brought together to: 1) find all mentions of an entity within
a document(e.g., “John F. Kennedy”, “Kennedy”) and assign
them a single canonical form (e.g., “John F. Kennedy”) that

13For a list of all supported formats, see
https://tika.apache.org/1.4/formats.html.

14http://tika.apache.org/
15http://www.neo4j.org/
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is then used to 2) link all mentions of the same entity across
documents.
Ingestion proceeds by calculating the number of times

each entity is mentioned in the entire data set and the num-
ber of documents in which each appears. These values are
stored in the graph database for later presentation in the
graphical user interface.
One of VizLinc’s main features is a map that displays the

locations mentioned in a selected subset of the document
set under analysis. To render this possible, locations have
to be resolved to latitude/longitude coordinates that can
be then highlighted in the map. This is precisely what the
Geocoding step depicted in figure 2 does. Internally, we have
used a number of approaches to carry out this step for our
data sets of interest. In the version that we have publicly
released, the user can point the Ingestion Tool to an online
geocoding server. The Geocoding step marks the end of the
Information Extraction stage.
During the Metadata Generation stage, particular data

structures are created and saved to disk. Most of the meta-
data generated is stored in an H2 database. H2 is an open
source database engine written in the Java programming
language7. Its speed, ability to run without a server, and
seamless integration with Java applications were the main
reasons why we chose it over other database engines.
Co-occurrences of person entities in documents are en-

coded in the form of edges between nodes of a graph. For
that reason, we store this information in a GraphML file.
GraphML is a comprehensive file format for graphs which
consists of a language core to describe the structural prop-
erties of a graph and a flexible extension mechanism to add
application-specific data8. Each node in the graph repre-
sents a person entity mentioned in the data set. An edge
exists between a pair of nodes if the corresponding entities
co-occur in more than two documents. Co-occurrence is a
symmetric relation therefore edges in the graph are undi-
rected. In sections 5.5 and 7 we will discuss how this co-
occurrence network can be used to find coherent groups and
“important” people [5].

Lastly, Lucene is used to generate an index that stores
the entire text content of the input documents in a for-
mat suitable for string searching. Apache Lucene is a high-
performance, full-featured text search engine library written
entirely in Java. Lucene is an open source project available
for free download9.

4. VIZLINC INPUT
When run for the first time, VizLinc prompts the user

for the system paths of the database, index, and graph file
generated by the Ingestion Tool. Additionally, VizLinc re-
quires a tile source to populate its map. Two tile source
types are supported in the current version. If users have
pre-generated tiles and saved them as images, the directory
in which they were saved can be specified. Otherwise, an
HTTP map server can be specified through a URL. Once
the input is specified and loaded, users can visualize and ex-
plore their data sets. At any point, users can point VizLinc
to a different data set or tile source.

5. DATA CHARACTERIZATION
Upon loading our data in VizLinc we can immediately

get a sense of the composition of our text corpus. Figure

Figure 4: Working Set view

3 shows a snapshot of the UI’s main components or views.
In the following sub-sections we describe each of these views
and how they can be used for data exploration.

5.1 Working Document Set
The working set is the set of documents currently being

visualized in VizLinc. At first, this set consists of all docu-
ments in the data set but as search queries are applied, this
set gets narrowed down to a relevant subset of the corpus
(see section 6). Keep in mind that one of the main goals
of VizLinc is to empower users to quickly filter out those
documents that might not contain relevant information.

The Working Document Set view lists the specific docu-
ments that are part of the working set. This view is shown
in figure 4.

At any point in time, the number shown across the top of
the view represents how many documents are being analyzed
and represented in all views. The entries under the Total
Mentions column will be explained in section 6.

5.2 Document Viewer
Ultimately, users should be able to easily read the infor-

mative sections of a document, as determined by the search
query, and draw relevant conclusions. Selecting a document
name in the Working Set view and clicking on the Open
button will show the document’s content in the Document
Viewer. This view displays the text extracted from the se-
lected document in its raw form. All formatting informa-
tion, other than capitalization and spacing, is discarded in
the ingestion process. Figure 5 shows this view.

If the Highlight All check box is selected, the Document
Viewer highlights all the mentions found in the document. A
color code is used to distinguish between people, locations,
and organizations. If this check box is not selected only
those mentions that match the search query are highlighted.

5.3 Search View
Figure 6 shows the Search View. As the name implies

the Search view allows users to search for particular terms
or entities in the data set. However, that is not its sole
utility. This view also lists all the people, locations, and
organizations automatically extracted during the ingestion
process. The number that appears next to the entity type is
the number of entities of that type present in the working set.
Each entity is shown along with its mention and document
count. The mention count is the number of times an entity
is referred to in the working set whereas the document count
is the number of documents in which an entity is mentioned.
Both counts are shown in this view only as it pertains to the
current working set, i.e., for all the documents that match

12



Figure 3: VizLinc: user interface
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Figure 5: Document Viewer

Figure 6: Search view. Here we show the most men-
tioned organizations in the New York Times dataset
as extracted by VizLinc’s Ingestion Tool.

the current query. If there is no query the counts correspond
to the whole data set. All lists can be sorted alphabetically,
by decreasing mention count, or decreasing document count.
The search-related features of this view will be covered in
section 6. Figure 6 shows the list of organizations extracted
from the New York Times data set (see section 7.1) sorted
by mention count.

5.4 Map
The Map view places the locations present in the working

set on a geographic map. A small circular waypoint is drawn
for each location. Users can navigate the map by zooming
and panning. The color or alpha value of each circle can rep-
resent either the mention or the document frequency of the
corresponding location. Adjusting the alpha value of way-
points based on frequency is particularly useful when there
are a large number of locations in the working set. The most
frequent locations become clearly visible whereas locations
with few mentions/documents fade into the background.

5.5 Graph
The Graph view shows the co-occurrence network of all

the people mentioned in the working set. Nodes in the graph
represent person entities and edges represent document co-
occurrence between the linked entities. This is a direct vi-
sualization of the graph generated during data ingestion.

VizLinc contains all of Gephi’s visualization, analysis, and
exploration capabilities In addition, we have made some use-
ful graph analytics accessible through the Graph Tools view.
The following sections describe those analytics.

Node Centrality
The centrality of a node measures its relative importance
within a graph. In the context of VizLinc, centrality can
be an indicator of how important a person is in the social
structures described in the working set. We have included
two centrality metrics: Eigenvector Centrality and PageR-
ank[6]. Both metrics are based on the concept that connec-
tions to high-scoring nodes contribute more to the score of
the node in question than equal connections to low-scoring
nodes. Users can choose to represent the nodes’ centrality
score through modifying their size and/or color.

Clustering
The clustering feature groups related nodes in a graph and
colors them accordingly. Clustering is based on the In-
foMap algorithm which attempts to find community struc-
ture based on the flow of information in the graph.[8]

N-Hop Network
Highlighting a node in the graph and clicking on the 1-Hop
Network button displays a network consisting of the selected
node, all of its neighbors, and all the edges that exist be-
tween them. Note that this graph would not necessarily
contain all the people in the working document set as nor-
mally as the“seed”node does not need to be one of the terms
in the search query. Similarly, clicking on the 2-Hop Net-
work button would generate and display a graph containing
all the neighbors of the nodes in the 1-hope network and the
edges between all of them.

5.6 Word Cloud
The Word Cloud provides an aggregated view of the most

frequent entities. The canonical names of the N most fre-
quent entities are laid out in a grid and their font size is
adjusted so that it is proportional to their mention or doc-
ument count.

6. SEARCH
So far, we have discussed how VizLinc can be used to in-

gest documents containing text, summarize the entities men-
tioned in those documents, and visualize their co-occurrence
patterns and geographical placement. In this section we will
talk about how VizLinc can direct users to relevant sections
of a document through searching.

A search query acts as a document filter and can contain
one or more terms. Documents that match all the terms in
the query are kept in the working set whereas those that
don’t are eliminated. As a result, all views are updated
to display only those entities present in the new working
set. Narrowing down the working set and updating all views
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Figure 7: Map showing three different parameter settings: a waypoint per location (left); color scale rep-
resenting the location’s mention count, where blue correspond to the lowest value and red to the highest
(center); and alpha value representing mention count, where the highest frequency locations are rendered
solid and the lowest frequency locations are not drawn.

Figure 8: Document content showing the matches
to the query String:elections & Location:Venezuela

accordingly constitutes the basis of discovering patterns and
relevant information in VizLinc.
Not only can users target a sub-set of all documents but

they can also quickly navigate to the sections within those
documents where the target entities are mentioned. This
is done by opening one of the documents in the working
set. The Document Viewer then shows the content of that
document and highlights all the instances of the query terms
using different colors for each term type. In addition, color-
coded markers for each line containing a match are shown
along the right side of the Document Viewer for quick access
to the relevant document sections (see figure 8).
In the following sections, we discuss the two search fea-

tures VizLinc offers.

6.1 String Search
String search refers to the process of finding all the doc-

uments that contain a specific string. Lucene is used both
for indexing the text during ingestion and to search the doc-
uments through VizLinc. Matching documents become the
working set and all views are updated to reflect the entities
mentioned in them. The nature of this type of search implies
that its results could mixed documents referring to different
entities. For instance a search for the string “washington”
will return documents mentioning Washington D.C. (loca-
tion), George Washington (person), and Washington State
University (organization).

6.2 Entity Search
An entity-based search query contains one or more named

entities (i.e., locations, persons, and organizations) and re-
turns all the documents that mention those entities. This
type of search differs from string search in that a query entity
could resolve to several different strings if they are all dif-
ferent ways to mention the same entity. This is the result of
within/across document co-referencing during ingestion. For
instance, a search for Person:John M. Smith might resolve
to mentions ”John Smith”, ”John”, or ”Mr. Smith”. This
feature might represent a significant advantage over string
searching if users have a particular entity in mind. For in-
stance, if we are interested in those documents that mention
the state of Washington, a search for Location:Washington
will exclude documents that mention President Washington
and not the location.

There are many ways to execute an entity search in Vi-
zLinc. In the Search view, users can select an entity from the
list and click the Add Filter button on the view’s toolbar.
Alternatively, users can drag the entity name from the list
and drop it in the Query view. Entities can also be added
to a query from the graph, map or word cloud by right-
clicking on their representation (node, waypoint, or label,
respectively) and selecting Add to Query from the context
menu.

7. CASE STUDY
In this section, we present a few hypothetical use cases

based on the results obtained by processing and analyzing
real data with VizLinc. These use cases and results should
give readers some insight about the type of patterns and in-
formation VizLinc can reveal. All hypotheses drawn from
our visualization and stated in this section were later con-
firmed by examining the content of the appropriate docu-
ments.

7.1 New York Times Articles (2007)
The New York Times Annotated Corpus [9] contains over

1.8 million articles written and published by the New York
Times between January 1, 1987 and June 19, 2007 with
article metadata. The data set we processed is a subset
composed of all articles written in the year 2007. This subset
is composed of 39,953 documents containing thousands of
entities.

Figure 9 shows the map, graph, and word cloud for the
whole New York Times 2007 data set. The map shows that
most location mentions are concentrated in the U.S.A. and
Western Europe. It is hard to make sense of the graph when
it contains so many nodes. Upon closer examination thanks
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to VizLinc’s graph navigation and clustering features, we can
see that clusters belong to different categories. Politicians,
artists and sports personalities all have their own clusters.
The word cloud shows the 50 most salient terms in the data
set. Not surprisingly, locations New York, United States,
New York City, Iraq, Manhattan and Washington are heav-
ily mentioned. Organizations like Congress, Senate, Yankees
(New York Yankees), and Google also form part of the list
of most mentioned entities.
We will rely on a hypothetical use case and potential ac-

tion path to illustrate VizLinc search capabilities on the New
York Times data set. Let us say that we are interested in
elections around the world. A first approach would be to
do a search for the string “elections”. The working set de-
creases from nearly 40,000 to 834 documents that contain
that string. The list of documents can now be sorted by the
total number of mentions and we could browse the contents
of the top hits. Instead, we will take a look at the map and
location list to see what locations co-occur the most with the
term“elections”. The reader should keep in mind that, after
executing a query, all views are updated to show different
visualizations of the content of the matching document set
only i.e., the new working set. The entity list in the Search
view shows that “Iraq”, “United States”, and “Israel” are the
most mentioned locations in conjunction with “elections”.
Examining the map shows activity in many other parts of
the world including the major countries in South America.
Let us say that Venezuela piques our interest, so we add
Location:Venezuela to the query from the map view.
The working set now contains 12 documents that could be

browsed within minutes if so desired. The resulting graph
shows the people mentioned in these documents and it is
much more suitable for visual analysis than the original one.
To get a sense of the importance of each individual in

the working set as described by the co-occurrence relation
defined in previous sections, we re-size the nodes in the graph
according to their centrality score. Also, we can cluster this
new sub-graph to reveal any community structures present.
Figure 10 shows part of the resulting graph.
The graph suggests that one of the most central people is

Hugo Chavez. Hugo Chavez was the president of Venezuela
in 2007 and had been re-elected the previous year. This
is not new information but it demonstrates VizLinc’s abil-
ity to find central people with respect to some user-defined
context. Clustering resulted in three major communities;
a subset is shown in Figure 10. Upon examination, it can
be noticed that the three clusters illustrated group three
different types of actors: USA political and media figures
(top-left), South American political figures (top-right) and
artists (bottom-left). From this point on, if we were inter-
ested in the sentiment and opinions of U.S. politicians to-
wards the government of Venezuela we could add members
of that community to the query. If what is relevant to us is
stories about South American leaders and the government of
Venezuela we would add members of the second community
to my query and examine the resulting documents. Authors
and entertainers appear in the graph due to spurious co-
occurrences in articles that contain lists spanning a variety
of unrelated topics.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced VizLinc and described

how it combines information extraction, graph analysis, and

geo-location for visualization and exploration of text cor-
pora. We have also presented a case study, centered on a
compilation of articles from the New York Times, to demon-
strate VizLinc’s features.

Now that we have achieved our principal goal of creating
a complete framework for data ingestion, visualization, and
exploration, our future work will focus on making each com-
ponent more generic and robust. Modules such as the ones
that generate the graph and perform coreference resolution,
yielded reasonable results on the data for which VizLinc was
initially intended. However, these modules turned out to be
rather simplistic for most of the text genres we have tested
so far. Multiple-term searches could also be improved by
restricting the distance at which both terms can appear in
a document. This will avoid documents in which terms co-
occur but are in fact unrelated. Expanding queries to sup-
port “and” and “or” operations is also a subject for future
work. With a platform in place, we can now take a task cen-
tric approach and assess whether the techniques and user in-
teractions VizLinc enables are appropriate to the successful
completion of a particular task. Finally, we understand that
user-defined algorithms and entity types will be required to
analyze certain data sets efficiently. Therefore we would like
to include a mechanism that would allow users to add these
custom components with ease.
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Abstract
Interactive data analysis applications have become critical
tools for making sense of our world. We present a set of rec-
ommendations to improve the quality and quantity of user
activity data logged from interactive data analysis systems.
Such data is invaluable for improving our understanding of
the data exploration process, for implementing intelligent
user interfaces, for evaluating data mining and visualization
techniques, and for characterizing how the broader ecosys-
tem of data analysis tools are used in practice.
Currently, much of the data logged by data analysis sys-
tems is intended for the purpose of debugging and system
performance monitoring, not for understanding user behav-
ior. As a result, researchers have to rely on labor-intensive
techniques for extracting useful information from low-level
event streams, or on collecting data through observation,
interviews, experiments, and case studies.
We present recommendations – derived from personal expe-
rience as well as examples from the literature – for logging
user activity in interactive data analysis tools, to ensure that
better information is collected, and ultimately, to enhance
human problem-solving abilities and speed the pace of dis-
covery. We illustrate these recommendations using exam-
ples from three widely-used but distinct systems for ana-
lyzing data: Tableau, an interactive visualization product,
Excel, a spreadsheet application, and Splunk, an enterprise
log management and analysis platform.

1. INTRODUCTION
Despite longstanding research interest in data exploration
and automation, there is a scarcity of automatically logged,
high-quality activity records of data exploration activities
at an appropriate level of granularity, available for study by
researchers and developers. In our experience, one reason
is that much of the data logged by data analysis systems is
intended for the purpose of debugging and system perfor-
mance monitoring, not for understanding user behavior [12,
16, 28]. As Horvitz et al. note in their paper on Bayesian
user modeling, “. . . it is critical to gain access to a stream of
user actions. Unfortunately, systems and applications have
not been written with an eye to user modeling.” [16] As a
result, much effort has been devoted to devising ways to
extract useful usability information from UI events, as re-
viewed by Hilbert and Redmiles in their extensive survey on
the topic [14].
As an alternative to analyzing automatically logged user ac-

tions, much of the research on understanding and improving
how users analyze data relies either on author intuition born
of first-hand experience [4, 6, 17, 33] or on observational
studies using manually-recorded and synthesized informa-
tion that is hard to share and compare [18, 19]. This lack of
automatically logged activity records hinders research into
improving tools for data exploration and analysis.
Currently, to understand what users are doing, build user
models to improve interfaces, yield predictions about user
actions, and make recommendations to users, researchers
have few options. One option is to take great pains to extract
high-level information out of low-level event logs [12, 14, 16,
28]. Another option is to manually observe user behavior, in-
terview experts, read through the literature, and synthesize
all of their observations “by hand,” then encode this synthe-
sized information into their tools [1, 17, 22, 27].
If user actions were instead encoded in a machine-digestible
format at an appropriate level of granularity, researchers
could create software to automatically detect these patterns,
much like clickstream analysis and webmining [3, 11, 13, 32].
As Hilbert and Redmiles conclude, “more work is needed in
the area of transformation and data collection to ensure that
useful information can be captured in the first place, before
automated analysis techniques . . . can be expected to yield
meaningful results.” [14]
This position paper encourages better practices for logging
data to enable studying user behavior in interactive data
and visualization systems. Our recommendations are based
primarily on our personal experiences trying to build user
models using traces from an enterprise-scale log analysis sys-
tem, but also on a review of the literature and conversations
with industry personnel. Our recommendations can be sum-
marized as follows:

• Design to capture high-level user actions.
• Capture provenance of all events.
• Observe intermediate user actions.
• Obtain the analyzed data’s metadata and statistics.
• Work towards log standardization.
• Collect user goals and feedback.

In Section 2 we first provide motivating examples of research
and applications that could be enabled if better user activity
data were logged from interactive data analysis systems. We
then give our recommendations for collecting this improved
data in Section 3. Section 4 discusses ramifications and
other issues.
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2. WHY DO WE NEED BETTER LOGGING?
This section motivates the need for better logging of inter-
active data analysis systems: characterizing the exploration
process, implementing intelligent user interfaces, evaluating
analysis tools and interfaces, and understanding the analy-
sis ecosystem as a whole. These purposes are not only of
interest to researchers who wish to understand these topics,
but also to industry practitioners, who can use this informa-
tion to design their products to make them better suited to
their users. The section concludes with examples from the
related area of web behavior mining, which is further along
and could hold useful lessons.
Characterizing the exploration process: Two interest-
ing theoretical models of the data exploration process have
been put forward recently that would benefit greatly from
better logging as proposed here.
(1) De Bie and Spyropoulou propose a formalization to unify
the concept of interestingness and help automate data ex-
ploration across a range of data mining techniques [8]. In
their formalization, users express interests and beliefs about
the data in terms of mathematical patterns and probability
distributions. To put this formalization into practical use,
rather than asking end-users to specify these directly, data
exploration tool developers will likely want to determine the
beliefs and patterns users find useful for a particular do-
main and then expose those to the user in a more easily
interpretable form. Doing so would require detailed and an-
notated records of exploratory activities in a wide variety of
scenarios.
(2) As another example, Perer and Shneiderman propose
a framework, called SYF (Systematic, Yet Flexible), for
guiding users through data exploration [27]. It operates
within interactive analysis and visualization interfaces, guid-
ing users by providing an overview of recommended analy-
sis steps, suggesting unexplored states, and allowing users
to annotate and share a record of their activities. To imple-
ment SYF within a given tool, developers must register their
recommended exploration steps with the SYF framework.
To derive these systematic steps, Perer and Shneiderman
suggest that developers try “[i]nterviewing analysts, review-
ing current software approaches, and tabulating techniques
common in research publications.”. An additional useful ap-
proach for establishing these steps would be to mine de-
tailed activity records from data analysis and visualization
systems.
Implementing intelligent user interfaces: SYF is one
example of an intelligent user interface. These assist the
user by offloading some of the complexity in working with
the tool at hand, often by automated means. Other exam-
ples include adaptive or adaptable [5, 24], predictive [29],
and mixed-initiative interfaces [15], as well as automated
user assistants [16, 23]. Automated interfaces often rely on
statistical models of user behavior and thus require accu-
rate accounting user actions at a level that corresponds to
the variables being modeled.
For example, Wrangler has a mixed-initiative interface that
makes suggestions to help users clean their data based on fre-
quencies of user actions [17]. Wrangler was originally based
on a transformation language with a small number of oper-
ators. To identify this list of transforms and pair them with
interface gestures, the authors were able to capitalize on
their extensive first-hand experience, as well as prior work
on languages for data cleaning.

However, for data exploration rather than data cleaning, it
is not clear what set of transforms and visualizations should
be supported. Previous work has relied on author intu-
ition and experience with particular situations to determine
what actions to support [4, 6, 33]. However, these could
be better determined by having detailed activity records
from data exploration and visualization tools with direct-
manipulation interfaces, logged at an appropriate level of
granularity [12].
Evaluating analysis tools and interfaces: More gen-
erally, researchers and practitioners evaluate interfaces to
understand user behavior, performance, thoughts, and expe-
rience, compare design alternatives, compute usability met-
rics, and certify conformance with standards [14]. To achieve
these goals using events logged from current UI systems,
researchers have devised a wide range of techniques: syn-
chronizing data gathered from different sources, transform-
ing, comparing, summarizing, and visualizing event streams,
and abstracting low-level log events into high-level modeled
events.
An alternative to these automated techniques is to perform
carefully controlled laboratory evaluations or focused long-
term studies of specific tools in isolation [18, 31, 20, 26, 19].
These usually involve watching videos of study subjects per-
forming a task, interviewing subjects about their experience,
and evaluating how well they performed the task.
While this research is valuable, some drawbacks of these
techniques are that they don’t scale well, they generate re-
sults that are not amenable to comparison or combination
with data from other studies, and the process of record-
ing the data is too open to subjective interpretation. High-
quality automatically logged interaction data would circum-
vent each of these problems, although at the expense of miss-
ing the big picture that these techniques provide.
Understanding the analysis ecosystem: In addition to
improving upon individual tools and interfaces, developers
and researchers want to understand the entire data analysis
pipeline. In practice, users leverage multiple tools to explore
and visualize their data depending on their needs. For exam-
ple, a data scientist might use Hadoop and R for statistical
work. A product manager might create their visualizations
in Tableau using web analytics reports generated in Splunk.
A customer analyst might extract numbers from Salesforce
to crunch in Excel. To get a complete picture of each of
these user’s exploration and visualization needs, it would
help greatly to be able to track their activities across each
of the tools they use. However, researchers are currently lim-
ited to gathering cross-tool data via long-term time-intensive
interviews with industry practitioners [25, 30].
Inspirations from other domains: When it comes to
automating data collection about user behavior and opti-
mizing interfaces in response, work in mining website inter-
action data and search engine clickstreams may help point
the way forward. Much effort has gone into designing tools
to collect extensive data about web users and analyze it in
increasingly sophisticated ways. A full survey of such work
is beyond the scope of this paper; here we provide a few ex-
amples for illustration. Researchers have designed advanced
and unobtrusive tracking software that can be implemented
using standard web technologies [3]. Information gleaned
from this type of data can be used to infer user goals to de-
termine, for instance, if the user is interested in purchasing
a product or merely researching it [13]. Such data can also
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be used as implicit feedback on the presented interface, for
example, regarding the quality of a ranking returned by a
search engine [11].
We hope that in the near future, interactive data analysis
and visualization users will benefit from similar efforts. We
contribute to this vision through our detailed recommenda-
tions regarding what data to collect from interactive data
analysis and visualization tools.

3. RECOMMENDATIONS
In this section we detail a set of proposals for collecting data
from interactive data analysis and visualization systems to
support the research and applications described in Section 2.
We illustrate our proposals with examples from three sys-
tems: Tableau, an interactive data visualization product,
Excel, a spreadsheet application, and Splunk, an enterprise
log management and analysis platform.

3.1 Overview of logging basics
Here we review the basic types of information that should
be logged.
Events: Units of information in a log are often called events,
even if they weren’t generated from an event-driven pro-
gram. However, GUIs and other interactive programs are
usually event-driven.
An event in a log is some piece of information that is recorded
any time work of interest is run on the system. Work of inter-
est could include functions called, queries run, GUI handlers
triggered, threads executed, and so on. Exactly what infor-
mation is logged for each event and the format it appears in
varies widely – it may include information such as function
parameters, execution duration, caller, and source code lo-
cation. For example, an event logged by Tableau is shown in
Table 1. Such events are typically logged for debugging and
performance monitoring purposes. Later we discuss specifi-
cally what types of events and associated information should
be logged for user modeling.
Timestamps: Events should always be accompanied by
a timestamp that describes the date, time, and timezone
information. Timestamps are important for understanding
the order and rate of events but are not always reliably ac-
curate reflections of when an event truly occurred. This is
usually not a problem when dealing with logs from a sin-
gle machine but can be extremely challenging to deal with
in a distributed setting. A discussion of how to deal with
this problem is beyond the scope of this paper; we refer the
reader to other work [14].
User ID: Ideally each event should be connectable to infor-
mation about the user “responsible” for initiating the event,
in the sense that their interaction with the program“caused”
the event. For some events, the “user” responsible may be
the system itself, for example, in the case of garbage col-
lection. In general, determining causality is not trivial, but
for the events of interest for user modeling, it should be
straightforward.
Version and configuration: It is critical to provide some
information that ties each event recorded to metadata about
the version and configuration of the interface that generated
that event. This is important because exactly what infor-
mation is logged and the format it is logged in tends to
change across versions and configurations. Without this in-
formation, it can become unnecessarily difficult to parse the
logged data, and ambiguities may be introduced. Ideally,

even changes to minor features of the interface would be
versioned, to facilitate A/B testing.

3.2 Design to capture high-level user actions
As Horvitz et al. state, “a critical problem in developing
probabilistic and decision-theoretic enhancements for user
interface applications is establishing a link between user ac-
tions and system events.” Thus, it is important not only to
log the actions that happen in the system but the actions
that the user takes. In other words, log the operations that
are applied to the data at the level of the user’s perspec-
tive, not just the executed code that the user’s command
calls. To model user behavior and cognition, we are primar-
ily interested in the former, but the systems engineers who
typically write the logging code are primarily interested in
the latter.
In some cases, this may be a conceptually simple fix. For
example, Tableau had 1 functionality “called Show Me Al-
ternatives and Show Me, which are respectively a dialog of
commands that automatically build views from scratch and
a button that is a shortcut to the default choice for the di-
alog” [21]. In their paper describing this functionality, the
authors have a discussion about their efforts to evaluate their
interface using the Tableau logs. They note that, “the log
files do not differentiate between Show Me and Show Me Al-
ternatives. These commands are implemented with the same
code and the log entry is generated when the command is
successfully executed.” This exactly describes the problem
with logging events from the perspective of what the system
executes versus from the perspective of the user taking the
action. It complicates the work of trying to understand how
users are interacting with a tool and especially complicates
trying to build statistical models of user behavior.
In other cases, logging user-level actions may be more dif-
ficult. For example, the authors of the Lumière project to
build an automated assistant in Excel found transforming
system events into modeled events to be challenging [16].
To establish the link between low-level atomic events and
the higher-level semantics of user actions they built a spe-
cial events system to analyze the atomic event streams and
map them into higher-level observations.
Figure 1 and Figure 2 illustrate this problem graphically,
using Excel as an example. Figure 1 shows the steps re-
quired to perform k-means clustering on data in Excel from
a user’s perspective [10]. The user may be doing this in or-
der to segment their customer base into different markets for
the purpose of releasing targeted advertising. Market seg-
mentation is the user’s intention, as shown in the uppermost
level of Figure 2. Ideally, we could record that the user is
performing clustering – this is the user’s task, shown in the
second level. However, in reality, the best information we
can capture is the stream of the user’s activities in the GUI.
This is the third level of information shown in Figure 2. In
practice, the information captured tends to be low-level sys-
tem events – the lowest level of Figure 2. Using events from a
lower-level to infer what action is being taken at the higher-
level can be painful if insufficient information is recorded. It
may rely on human-defined rules or on statistical inference,
as in the events system of the Lumière project.
HARVEST is a visual analytics system specifically designed
to deal with this problem and capture the provenance of “in-

1Show Me Alternatives is no longer part of Tableau.
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Table 1: Example of an event logged by Tableau. This event records that a function was called, giving its
location in the source.

Cluster	  1	   Cluster	  2	   Cluster	  3	   Cluster	  4	   Point	  1	   Point	  2	   Point	  200	  

1	   1	   0	  
=RAND()! 0	   1	   1	  

1	   1	   0	  

0	   0	   1	  

Distance	  to	  cluster	  4	   =SQRT(...!

Min	  distance	   =MIN(...!

Assigned	  cluster	  

Objec:ve	  

Insert new 
columns 

Enter random values 
for cluster centers 

Compute 
distance 
between centers 
and points 

Compute minimal 
cluster distance 
and assigned 
cluster 

Set up optimizer to 
minimize total 
distance between 
assigned cluster 
centers and points 

1	   2	  

3	  

4	  

5	  

Figure 1: Shown above are the steps a user takes to perform k-means clustering on their data in Excel.
Ideally, the interface would be designed to easily capture the user’s task, which is clustering. Barring that,
the task may have to be inferred from the sequence of user actions, shown here.

sights” [12]. It does this by exposing interface elements for
performing tasks that directly correspond to “semantic ac-
tions,” like bookmark, brush, filter, and sort. In other words,
the interface is designed so that the actions the researchers
are interested in tracking must be explicitly indicated by the
user. Contrast this to a system that allows the user to se-
lect a view with many potential elements of interest at once,
so that it is difficult to discern what the user most wanted,
or to a system that requires the user to achieve their task
through several direct but low-level actions like clicking and
dragging, as in the example above. Designing the interface
to facilitate easier capturing of high-level user behavior is a
useful approach that should be considered wherever possi-
ble.
If this is not possible or desirable for a particular applica-
tion, researchers can rely on techniques for combining se-
quences of events into high-level tasks [28]. For example, if
the system was designed such that the user interacts with
it at a relatively low-level (such as clicking and dragging, or
entering functions into an interactive shell), it will not be
possible to log the user’s high-level tasks because those will
not be reflected in their activity stream. In this case, it is
important to keep the end use case of the interaction data in
mind while developing the application and the logging code.
Ideally, tool builders would design the system that identifies
from low-level events the high-level tasks employed in user
models in tandem with the application, rather than as an
afterthought.

3.3 Capture provenance of all events
Information about the point in the application where an
event occured and how it was issued should be logged along
with the event itself. This information reflects the event’s
provenance or point of origination. The following real-life
anecdote demonstrates the importance of this.
Splunk records an event every time it executes a query, as
shown in Table 2. The query, highlighted in bold, is an
important source of information about the analysis actions
users perform on their data.

Some of these queries may be written interactively by a hu-
man user. The user may issue these queries by typing it
into the Splunk shell at their command line interface, or by
typing it into the search bar in Splunk’s in-browser GUI, or
by hitting a button in an application that then issues the
query to Splunk’s back-end, or by loading a web page in
a browser-based dashboard that triggered the query to ex-
ecute. Other queries may be written by a user once, but
then set up by that user to execute programmatically, via
a script, for instance. Still other queries may have been is-
sued from system code to fulfill some function of the system,
and were written by a programmer of the system, not by a
human user of that system. (Usually in this case, the user
will be indicated to be the system, as in the example given
above.)
To correctly model a user’s cognitive state and extract arti-
facts like user sessions, it is critical that each time a query
is logged, it is possible to easily and unambiguously recover
this origination or application context information. Other-
wise, the record of what actions a user took may be tainted
with actions that they did not actually take, or actions that
a user actually took may be inadvertently discarded. Our
first-hand experience attests that it is extremely difficult to
recover this information if it is not captured when the data
is originally logged. Statistical learning techniques like clus-
tering and classification can aid in probabilistically identify-
ing origin information post facto, but rather than relying on
such techniques, it is better to plan ahead and capture this
information when the data is initially logged.
As another example, in Tableau, if a user creates a scatter
plot by dragging a variable onto a shelf and receiving the
default view versus selecting a scatter plot from the Show
Me Alternatives menu, it should be recorded not only that
the user created a scatter plot but also how the user created
the scatter plot i.e., the provenance.
Even then, we have observed in our work with Splunk logs
that sometimes users perform actions that (unintentionally)
circumvent efforts to accurately model their behavior, for ex-
ample, by writing external scripts to interact with a browser-
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09-28-2012 18:28:01.134 -0700 INFO AuditLogger - Audit:[timestamp=09-28-
2012 18:28:01.134, user=splunk-system-user, action=search, info=granted ,
search_id=‘scheduler__nobody__testing__RMD56569fcf2f137b840_at_1348882080_101256’,
search=‘search index=_internal metrics per_sourcetype_thruput | head 100’, autojoin=‘1’,
buckets=0, ttl=120, max_count=500000, maxtime=8640000, enable_lookups=‘1’, extra_fields=‘’,
apiStartTime=‘ZERO_TIME’, apiEndTime=‘Fri Sep 28 18:28:00 2012’, savedsearch_name=‘‘sample
scheduled search for dashboards (existing job case)’’]

Table 2: Example of an event logged by Splunk. A query is highlighted in bold. Queries represent useful
records of user activity. These queries are written in the Splunk query language, modeled after UNIX pipes
and utilities.

based GUI (i.e., a bot). But this should be rare if the system
is designed to encourage correct and easy-to-track use, such
as providing programmatic access to its analysis capabilities
via an API, if that is what users need.

3.4 Observe intermediate user actions
Modelers and researchers of user behavior may also be in-
terested in user activities that are not “submitted” to the
system. This includes information such as

• text that a user types in a search box and then deletes
and then types again (not just the text that is finally
submitted when they hit enter),

• data on where the user’s mouse hovers, and
• interface selections that the user makes that are done

client-side and not sent to the back-end.
For example, Splunk provides a browser-based interface for
visualization. The bulk of data transformation operations,
however, occur on the Splunk servers, which is where the
logs are written. In order to capture the full extent of user
behavior, such as extracting data, aggregating it, then tog-
gling between a pie chart and a bar chart, it is necessary for
the client to send this client-side activity information back
to the system to be logged. Otherwise the system will not
“see” this activity, since it does not pass to the back-end in
the course of normal operation [2].
Developers of automated help systems may be particularly
interested in such intermediate behavior because it may in-
dicate confusion on the part of the user. For example, the
Lumière project to create an automated assistant in Excel,
modeled events such as“menu surfing,”“mouse meandering,”
and “menu jitter.”

3.5 Obtain analyzed data’s metadata & stats
If possible, with the user’s permission, metadata and statis-
tics about the data over which the user is operating should
be logged. Metadata includes information like schema (col-
umn names and data types) and provenance. Statistics in-
cludes things like descriptive statistics (describing the em-
pirical distribution of the data), correlations, and measures
such as entropy and cardinality. This would allow an in-
ference model that supports an intelligent interface’s pre-
dictions and suggestions to incorporate variables that re-
flect information about the user’s data. It would also allow
product managers to identify important user personas and
their needs. For example, a company may be able to recog-
nize by tracking this information that 35% of the users of
their system use their browser-based GUI to analyze email
marketing data specifically, and further observe that these
users often follow very similar analysis workflows. This may
spur the company to create a specialized product targeted
towards these users needs that conveniently encapsulates
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Figure 2: Users intentions motivate their actions,
but may be hard to know (top row). When trying
to understand user behavior especially with respect
to data exploration and visualization, we are often
interested in the high-level task the user is perform-
ing (second row). In the best case, we can log the
actions the user takes via the UI (third row). Some-
times what is logged are low-level system events,
which can make it very hard to reconstruct the
user’s behavior (bottom row).

these workflows. Less hypothetically, Splunk provides on
top of its framework targeted “apps” – pre-built dashboards
and tools designed for certain types of users with certain
data sets. However, these apps are currently designed based
on information manually gleaned from extensive interac-
tion with customers, not based on data gathered through
Splunk.
We acknowledge that collecting this data is a challenging
proposition in many scenarios because users may be un-
willing to provide information about their data, which may
include operational, propriety, or personally identifying in-
formation. The “Show Me” paper by researchers at Tableau
discusses the challenge this poses to developers trying to use
logs to evaluate interface innovations [21]

3.6 Work towards log standardization
Effort should be made where possible to log information that
facilitates combination with and comparison to other sys-
tems. This would allow researchers and developers to under-
stand what functionality is missing from existing tools, bet-
ter characterize portions of the analysis pipeline that are cur-



rently less well understood, such as exploration, and identify
how best to integrate new data mining techniques into ex-
isting workflows. Ideally, there will one day be cross-system
instrumentation that would allow researchers to understand
the entire ecosystem of data analysis tools and visualization
and the roles they play in users’ daily workflows. To accom-
plish this, it may benefit the community to develop an open
standard for logging, similar to the Common Information
Model, which defines a way for objects in an IT environ-
ment and relationships between them to be described so as
to facilitate management of systems, networks, applications
and services independent of manufacturer or provider [9].
Examples of standard schemas in other domains that may
serve as inspiration includes IEC61850 for electric grids and
SensorML for sensor data.

3.7 Collect user goals and feedback
The user’s goal, or the task they are trying to perform, as
well as their position and their level of expertise, are all
likely important factors that will likely greatly impact what
interface elements an adaptive interface should show or what
recommendations should be given. This has long been rec-
ognized as important for determining what visualizations to
automatically generate for a user [7]. Where possible, in-
formation about goals, expertise, and other relevant context
could be solicited from the user. However, if this solicitation
requires the user do additional work that does not benefit
them, it is highly unlikely to be successful. One possible
solution could be, for instance, asking the user to select an
answer from a list at a natural inflection point in their work-
flow, to reduce the inconvenience to the user (for example,
as is often done when one unsubscribes from a mailing list).
More research will be required to determine how to do this
in a way that is not annoying and that still yields useful
information. The information we recommend collecting in
the rest of this paper could facilitate such research.
If an adaptive, predictive, customized, or mixed-initiative
interface is implemented that provides suggested actions or
tasks to the user, the interface should also provide the user
with the opportunity to comment on, rate, rank, and mark
as interesting or uninteresting each suggested action, as sug-
gested by Perer and Shneiderman [27]. This data should be
recorded to improve the underlying model used to generate
the suggestions and can also be provided to the user. Such
data also becomes very useful to the user as an artifact of
their analysis and exploration process.

4. CONCLUSION
We conclude our recommendations with a brief discussion
of implementation considerations. As suggested previously,
one reason high-quality user activity records may not be col-
lected from data analysis systems is that often, understand-
ing and modeling user behavior is not a first priority for de-
velopers of such applications, who instead focus on logging
for system debugging and performance monitoring. Horvitz
et al. note that “establishing a rapport with the Excel devel-
opment team was crucial for designing special instrumented
versions of Excel with a usable set of events.” [16] Similarly,
in our experience with Splunk, we found that some of the
interaction data that we were interested in, particularly the
visualization activity that occurs on the client side, was not
data that the development team had previously needed to
log [2].

Hilbert and Redmiles have raised the concern that requiring
more data about user behavior “places an increased burden
on application developers to capture and transform events
of interest.” [14] We acknowledge that there will be costs
associated with more thorough and high-quality logging of
user activity, but we argue that as the examples in Section 2
demonstrate, this effort will be well worth it for the wide
variety of applications and research it enables. Such work
will ultimately benefit the end-user of data analysis and vi-
sualization systems, particularly during data exploration, by
enhancing human problem-solving abilities and speeding the
pace of discovery.
There are a number of concerns related to collecting data
from or about the user, particularly if it is personally iden-
tifying information or sensitive operational data from an or-
ganization. A full discussion of these concerns and their
possible solutions are outside the scope of this paper. We
argue though that through careful planning and working to
develop trusted collaborations with the users who will be
the ultimate benefactors of such efforts, researchers and tool
builders should be able to improve their practices for logging
interaction data from data analysis and visualization tools.
Obtaining permission from users before logging their data,
and allowing them to see what data is logged and edit and
remove portions that they do not wish to have remain in
the logs provides important protections. Policies to perma-
nently remove data after a fixed amount of time, after useful
information has been derived from the specifics and placed
into general models can further help to protect individual
privacy. Some users have already shown themselves willing
to share data about their usage and behavior with compa-
nies in the interest of improving their user experience and
the company’s product. As already noted, it is important
that such data be collected with users’ full knowledge and
consent.
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ABSTRACT
Visual analytic tools are invaluable in the process of knowl-
edge discovery. They let us explore datasets intuitively us-
ing our eyes. Yet their reliance on human cognitive abilities
forces them to be highly interactive. The interactive na-
ture of visual analytic systems is facing new challenges with
the emergence of big data. Massive data sizes are pushing
against the boundaries of current visualization capabilities.
Also the emergence of complex datasets is asking for new
ways of navigation in the high–dimensional space. EVA (Ex-
plorable Visual Analytics) is an in-progress work for develop-
ing a web–based tool for visual exploration of large and com-
plex datasets. EVA tries to handle large data sizes through
utilizing local GPU resources and a novel client/server archi-
tecture. It also provides an easy navigation mechanism for
exploring high–dimensional data. This paper presents our
experiments in knowledge discovery with EVA, using US
Census employment dataset as our testbed. We hope our
experiences result in designing guidelines and techniques for
the future visual analytic tools of the big data era.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Gen-
eral; H.4 [Information Systems Applications]: Gen-
eral; H.1.2 [User/Machine Systems]: Human Informa-
tion Processing

Keywords
visual analytics, data exploration, visualization, dimension
reduction, data mining

1. SENSEMAKING AND BIG DATA
A data explosion is happening, promising invaluable op-

portunities in scientific and technological progress, yet this
vast potential relies not only on our ability to collect and
access this data, but also on us being able to understand

it. Despite this fact, it seems that knowledge discovery from
raw data has not still reached its full power. We are pro-
ducing much more data than we can explore leading to mas-
sive amounts of untapped data waiting for future discoveries.
But what makes knowledge discovery hard?
There are in general two major approaches to do knowl-

edge discovery: either we use mathematical methods (e.g.
machine learning) or we use human judgment by directly
looking at data (e.g. visual analytics). Mathematical meth-
ods are profoundly powerful tools yet they still rely on hu-
man intuition for the following reasons. First, mathematical
methods are a collection of tools. Finding the right tool, us-
ing the right models, tuning its parameters and feeding the
right feature space into it are often done by human experts.
Second, mathematical methods are not context-aware. It is
this extra knowledge that usually leads human experts to
find the right features or ask the right questions. Third,
mathematical methods are not good at providing explana-
tions. A famous example is a Neural Network which is great
at finding patterns but does not provide any explanation
for how does it find it. And last but not least, mathemati-
cal methods are best practiced by mathematicians and com-
puter scientists while most data experts are from other fields,
not proficient enough in using these tools on their own data.
These facts force us to keep the human in the knowledge
discovery loop. Therefore the important question to answer
becomes how do people make sense of the data?
Jerome Bruner [10] argued that children posses three modes

of representation, (1) interactive, (2) visual and (3) sym-
bolic, and they use these modes to understand a new object
or system. In other words we act, we see, and we ask to
make sense of something new. For example, upon encoun-
tering a new object, the child uses her hands to play with
the object, looks at it to find out what happens when she
touches it and in the more abstract level she may even ask a
question to acquire new sources of knowledge. This process
is then repeated until the child amasses enough knowledge
about the object until she can build a reliable mental model

26



representing it (Figure 1). It can be argued that even sci-
entists upon facing a new system, be it a simple object or
a complex dataset, go through the same process in order to
build a mental model of it. This multi-modal exploration of
data is an essential step in building the right intuition and
plays a significant role in choosing and applying the right
rigorous methods in the following steps. For example in
a classification problem using machine learning tools, data
scientists usually first draw the raw data and do some basic
interactions with the data (e.g. scaling). This step provides
the initial guidance which then translates into choosing the
right model/machine learning tool. This process of build-
ing a mental model of the data is called sensemaking. It
is only after acquiring this intuition that we can apply our
mathematical tools in their full power and extract meaning
and knowledge out of the raw data. It is worth mentioning
that the model presented in Figure 1 has a hidden assump-
tion: the feedback we see from interacting with an object
should be almost instantaneous. If we devise a new theory
and test it on the object/data but receive our answer after
several hours, we will not be able to effectively build a men-
tal model as we lose our train of thought after only a few
seconds. Therefore query latency can have a major impact
on the sensemaking process.

Figure 1: Multi-Modal Exploration: how people un-
derstand an object or a system.

Up until now, this sensemaking process has been done
intuitively, usually through conventional visualization tech-
niques (e.g. plotting). But the emergence of vast and high
dimensional datasets is raising challenging issues not ad-
dressable by our current data analytic approaches. For ex-
ample, current datasets are getting so large that asking even
the simplest questions from them may take hours or days of
computation. Even after accessing the data, usual visual-
ization techniques may not work due to issues like overplot-
ting. Furthermore, it is not even possible to fully visualize
datasets that have hundreds or thousands of dimensions.
Another issue is the lack of hypotheses for analyzing the
data. Due to decreasing trend of storage prices, we are ac-
quiring and storing an ever increasing amount of data with-
out knowing which portions of that might be useful in a
future analysis. Facing with these datasets, even finding the
right questions becomes a part of data exploration process.

EVA (Explorable Visual Analytics) is an effort to seek
for design guidelines and analytic tools which are capable
of visualizing, exploring and analyzing large and complex
datasets. Our hope is to promote a set of practices which
lead to faster and easier data driven knowledge discovery. To
achieve this goal, EVA attempts to facilitate hypothesis gen-
eration and query refinement through a series of consecutive
multi-modal exploration loops. We also seek new compu-

tational techniques which can scale appropriately with the
data size and complexity.
Section 2 gives some examples of how researchers are ap-

proaching large and complex datasets and what are the chal-
lenges they are faced with. In Section 3 we introduce EVA
and give an example of using EVA for knowledge discov-
ery on real data. Section 4 discusses some of the lessons we
have learned so far in exploratory data analysis and suggests
some possible approaches that might expand our ability to
do knowledge discovery in large and high–dimensional data.

2. NEW APPROACHES IN VISUAL ANALYT-
ICS

2.1 Knowledge Discovery, Visualization, and
Big Data

The process of knowledge discovery is a fundamental as-
pect of science in general. A rich model for describing this
process is presented in [22]. The authors argue that scien-
tists navigate in a four dimensional space in order to extract
meaning from their observations. The first dimension in
this paradigm is called data representation. This is where
an abstract representation of data is being formed from a
set of features. The second dimension is hypothesis space.
Here, the scientist generates new assumptions on the possi-
ble causal relationships. Then she moves to the third dimen-
sion of experimental space in order to test those hypotheses.
It should be noted that the experiments themselves live in
an experimental framework that defines the boundaries of
valid experiments and expectable outcomes. Therefore the
fourth dimension is experimental paradigm space where the
scientist can choose a completely different class of experi-
ments for her task. In visual analytics tools, a knowledge
discovery process can be modeled based on the first three di-
mensions. A specific visualization is an example of the data
representation space. The ability to interact with the data
is happening in the experimental space. Finally, the visual-
ization/exploration choices form a series of decisions in the
hypothesis space. By using visual space for doing data rep-
resentation, we have a tangible and more direct connection
to the actual data. By forming a visual query, we actually
form a hypothesis in our mind and when we do a visual
search, we are experimenting with data in order to confirm
or reject our hypothesis. This process has been explained
in literature in various ways. Fry [13] presents this process
in seven steps. First, we should acquire the data. Then
we have to parse it and make it machine readable. This
is then followed by filtering in which we select a subset of
data that is relevant to our work. We then mine for useful
information which usually means some sort of mathemati-
cal transformation. The results are then represented in an
initial visualization. Then comes the refinement and finally
interaction steps in which we explore the visualization and
improve it by redoing the previous steps until we extract or
discover the desired knowledge. A more general perspective
on knowledge discovery is pursued in the field of visual an-
alytics [17, 18]. The goal of visual analytics is to illuminate
the way people understand data and then turn it into an
algorithmic discipline which benefits from both the power
of automated processing techniques and the capabilities of
humans in discerning and analyzing visual patterns.
Visualization research has been successful in turning raw
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data into meaningful visual presentations yet the general
perspective of the field does not differentiate between small
and simple datasets with large and complex ones. This
paradigm is changing as visualization experts face with un-
foreseen challenges unique to the big data era. For example,
as the size of the dataset grows, the responsiveness of tradi-
tional visualization systems drops until it is no longer inter-
active. In addition to the scalability issue, visualizing and
understanding complex datasets with hundreds of features
is very challenging. These issues have opened new lines of
research which often try to change the underlying visualiza-
tion approach in order to overcome these limitations.

Fekete [11] provides a nice summary of the challenges
faced by current visual analytics tools and the paradigm
shifts required to overcome these issues. He argues that as
data sizes are getting larger, query latency is posing a se-
rious problem. If the system does not provide an answer
to a particular question within a few seconds, the analyst
may forget her question and not benefit from the answer.
He suggests that by shifting from conventional accurate but
slow analytic tools toward inaccurate but fast paradigms, we
can overcome the query latency issue when we are dealing
with large and complex datasets. It is interesting to see this
mindset has started to gain momentum for example in [12]
where authors use partial but fast querying techniques to
analyze very large databases. Fekete argues that another
issue in current analytic systems is the lack of feedback and
steering. When a user sends a query, the system starts pro-
ducing a report. This process cannot be interrupted by the
user. She should wait until a query–response “episode” is
finished and then start asking a new question. We need to
be able to steer the system toward our desired answer as it is
analyzing the data. For example, we should be able to play
with the parameters of our question or navigate through the
data space and ask for finer and more accurate answers for
a subspace of a large dataset. Interactivity is another im-
portant aspect of visualization systems. For example when
a user tries to rotate a 3D object, the operation should hap-
pen instantaneously, usually within a 100 ms. This poses
a great technical challenge in front of current visualization
tools which their frame rate usually drops considerably fast
even with modest data sizes of tens of thousands [8]. To
summarize these issues we should expect new visual ana-
lytic tools which provide responsive multi-modal exploration
mechanisms to support sensemaking, provide novel steering
abilities to navigate large and high dimensional data, focus
on small query latency even in cost of inaccurate answers,
and provide non–episodic interactions where a user can mod-
ify her query while it is being processed.

2.2 Dealing with Size: Screen–Aware Tools
While data sizes are growing without any foreseeable limit,

our cognitive abilities are fairly limited. We probably can
only perceive a few million features or even less [11]. As it is
us who are the actual bottlenecks in understanding visual-
izations of large data, a new class of solutions are emerging
which focus on the output instead of input. These screen–
aware (or output–sensitive [7]) tools use various data ab-
stractions to reduce the size of presented information and
avoid analyzing portions of data that are out of the scope
of screen. They then use interactive and exploratory mech-
anisms to help the user navigate through the visualization
and understand the data better. These tools are based on

the assumption that we do not care for fine details in a big
data visualization. A data analyst who looks at a visual-
ization of millions of points is often only interested in the
general shape of the visualization; the exact location of a
single pixel is usually not important to her. On the other
hand, she would prefer to be to able to interact (e.g. zoom,
pan) with this visualization in a fluid manner in order to
form a better mental model of the overall characteristics of
the visualization.
One class of screen–aware solutions are called on-demand

processing [7]. They only draw those things that would be
visible. For example if the visual representation of a data
point is smaller than a pixel or outside of the scope of screen,
there is no need to process it. One of the most common tech-
niques used in this class is semantic zoom [15]. In contrast
to geometric zoom which redraws all pixels upon zooming,
the semantic zoom provides more detail when zooming in
and hides some of the detail when zooming out. This can
result in tremendous conservation in processing and com-
munication load and therefore it has been used extensively
in visualization systems, such as online maps, etc. Semantic
zooming is usually used in conjunction with multi–resolution
data structures. The basic idea of a multi–resolution data
structure is to pre–compute the visible data for each zoom
level. As an example, this technique has been used in Giga-
Pan and TimeMachine [21] to present massive high resolu-
tion images and videos in an interactive setup which allows
zooming on any desirable part of the video while keeping the
communication and processing under a manageable limit.
Another example of multi-resolution data structures is pre-
sented in [19]. Here, the data structure is more complicated
and has many dimensions but the fundamental idea is to ag-
gregate over different features and pre–compute these values
for several desirable zoom levels. This can then be used to
interactively visualize multi–dimensional datasets with over
billions of data points.
Another class of data abstraction solutions go further than

only showing visible things and instead focus on only show-
ing the important things. In one popular set of techniques,
it is the computer/algorithm itself that decides on what is
considered important. These techniques are usually pursued
as clustering, sampling, aggregation, filtering, . . . where the
algorithm either combines several data points or selects a
smaller subset of them and only processes those smaller rep-
resentations. An excellent example in this class is presented
in [12]. Here, when the user sends a query to visualize some
aspects of the data, the algorithm will randomly select a
small sample of data points and then visualizes only those
points. It also presents some confidence intervals around
each visualized object in order to help the analyst in un-
derstanding the error range of the incomplete visualization.
With more time, the system grabs more data points and in-
creases the accuracy of its visualization (also decreasing the
confidence intervals). This system provides a very promis-
ing approach to visualization of large datasets by using both
aggregation (in the form of queries) and sampling while in
the same time it provides an inaccurate but responsive ex-
perience.
While using computer algorithms in choosing the impor-

tant aspects of data results in highly scalable visualization
systems, it is not obvious whether the algorithms will al-
ways choose the correct abstraction. This is why another
class of solutions insert the user in the loop and ask her
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to provide feedback on what is important and what should
be visualized. The most common type of these techniques
is query–based visualization [7]. Here, the user creates a
query or search term and reduces the amount of data to a
smaller subset which is then used for the final visualization.
For example, Beyer et al. [6] present a query–based system
for visualizing neurons in a terabyte scale dataset. The user
selects regions and neurons of interest and then the system
presents neighboring neurons and their relationship in an
interactive setting. Another technique used for finding the
correct abstraction is steering. Here, the user guides the vi-
sualization system in a two–way mechanism — the system
provides an initial visualization and then the user refines it
by steering the system toward her regions of interest and
then the process repeats. An excellent example in this area
is presented in [24] where the system uses a dimension re-
duction algorithm to present a large and high–dimensional
dataset but instead of keeping users as passive observers,
it actively engages them: the system gradually shows more
points in the projected visual space while the user can steer
the system towards her desirable regions. This allows the
system to only focus on projecting data points in that re-
gion, therefore avoiding unnecessary calculations.

2.3 Dealing with Complexity: Human–Assisted
Navigation

High–dimensional datasets are inherently hard to visualize
(think of a 4-D cube) yet current big data trend is not only
expanding in data size, but also in data complexity. Most
high–dimensional visualization systems focus on some sort
of dimension reduction. One class of these techniques are
human–assisted methods which benefit from human feed-
back in their dimension reduction process [23]. These meth-
ods are often heavily interactive as it seams interacting with
a visualization can somehow compensate for our inability to
perceive high–dimensional space. Human–assisted dimen-
sion reduction usually starts with a projection algorithm
that has some parametric values. The role of the human is
to fiddle with these parameters until the final projection is
more suited to her needs. This approach adds an extra layer
of sophistication to the visualization system and extends its
capabilities in generating meaningful projections of the com-
plex data. It also has the added benefit of engaging the op-
erator in the visualization process. This can both increase
the awareness of the analyst plus through her feedbacks, the
system can save valuable computational resources. One of
the early examples of human–assisted methods in visualizing
high–dimensional datasets is Grand Tour [23]. In a Grand
Tour, the analyst can choose any arbitrary nonorthogonal
projection of the data. This can reveal features that may
remain hidden in the conventional orthogonal projections
used in some other approaches such as parallel coordinate
plots. Another early example of human–assisted methods is
presented in [20]. This system has been used to visualize
documents in a multi–dimensional setting. Each dimension
is represented as a point in the visualization plane and doc-
uments would attract/repel to these points based on their
similarity to each dimension. Also, by moving these feature
points, the user can see how each document reacts. This
helps in clustering documents into similar groups in their
complex environment.

Steering is one of the recent techniques in human–assisted
approaches. Williams and Munzner [24] introduce a navi-

gation mechanism in which the operator steers the system
toward the desired subspace of the original dataset. The
projection algorithm is then focused on this area, avoiding
unnecessary computations on the rest of the dataset. Also,
by actively engaging the user in the process of complex-
ity reduction, the operator builds a better mental model
of the data. Ingram et al. [16] provide a different mech-
anism for engaging the user. Here, the system provides a
collection of different dimension reduction algorithms and
provides tools for tuning their parameters. The analyst can
combine these algorithms together until she finds a desirable
low–dimensional representation of the data. This is espe-
cially beneficial when the user is not an expert in machine
learning and dimension reduction techniques. The authors
also extensively use the idea of navigation and landmarks.
Different levels of global and local navigation improve the
exploration ability of the visualization tool while landmarks
help the user to find interesting projections of the data. In
a similar fashion, Gratzl et al. [14] introduce a tool for ex-
ploring rank–based data. Here, the projection algorithm
is a simple weighted linear combination of dimensions, but
the user has much more power on selecting each weight and
the overall combination rules. The tool is also highly inter-
active, making it easy to create new hypotheses and then
testing them through a simple drag and drop process.

2.4 Next Steps in Visual Analytics
The solutions discussed here are reshaping the conven-

tional visualization paradigm. They put priority over speed
and responsiveness even if it results in reduced accuracy,
presenting a subset of data or presenting an abstract and
compressed version of it. These solutions are also often
screen–aware, which means their computational complex-
ity is usually dependent on the screen size rather that data
size. This makes them great candidates for emerging vi-
sual analytic tools that are capable of scaling with growing
data sizes. Future visual analytic systems should also of-
fer non–episodic interaction with the data. In this type of
interaction, the user can constantly fiddle with the param-
eters of the query while the system instantly demonstrates
new visualizations. This means that when the system re-
ceives a new input from the user, it would not wait until
it completes the previous data analysis action. Instead, it
adjusts its results to the new query. This interactive query
building is essential in forming and improving our hypothe-
ses about the data and as Fisher et al. [12] show in a case
study, this can be highly beneficial for data analysts. Non–
episodic interaction can be useful because in knowledge dis-
covery we often need to ask many questions and perform
multiple iterations on our hypotheses before we can form
the right questions. A data analyst seldom asks only one
question. She should form many assumptions and refine
those assumptions through consecutive visualizations until
she can find the answers she is looking for. The ability to
change query parameters on the fly should be accompanied
by fast response times from the system. Our memory is very
limited, specially when dealing with vast quantities of visual
information. Short query latency and intuitive navigation
mechanism can help us go back and forth between several
visualizations and look at the data from multiple perspec-
tives, therefore increasing our chance for finding meaningful
patterns.
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3. EVA PROTOTYPE
Explorable Visual Analytics (EVA [5]) is a visualization

system prototype. It has been developed to address the chal-
lenges arising in dealing with large and complex datasets.
The main philosophy behind designing EVA is to improve
hypothesis generation, both in quality and quantity. EVA
tries to provide easy to use and intuitive navigation mech-
anisms. Through them, the user can easily navigate in a
large space of data objects. It also helps the analyst to
look at the multi–dimensional data from multiple perspec-
tives, hence giving her a better chance for finding interesting
phenomena in the data. In general, the interactive nature
of EVA is critical in sense making and creating a mental
model of the data. Also, EVA is designed to be responsive
as it is beneficial to minimize the time between generating
a question and testing it. There is an important period be-
tween when an analyst forms a question in her mind until
she can see the relevant visualization to test that hypothesis.
If it takes too long (e.g. even more than 10 seconds), the
analyst may lose her train of thought. This is mainly due
to our limited working memory. EVA minimizes this delay
period and therefore lets the analyst to instantaneously test
her new ideas. This is in turn helpful in generating more
questions. In conclusion, EVA provides a simple naviga-
tion mechanism for studying a large and complex dataset
through visual inquiries. It also has short processing time
in order to avoid any delay between receiving a query from
the user and visualizing it. EVA is also designed to provide
a high resolution visualization, as richness of details is an
important factor in doing knowledge discovery. All of these
aspects helps the user to start with a relatively small set
of assumptions, test them, generate new questions, refine
them, and gradually build a better model of the data, which
then results in finding new and meaningful patterns.

Based on the knowledge discovery framework presented
in Section 2.1, EVA is composed of three major conceptual
sections. In the data representation section, EVA provides a
5 dimensional visual space consisting of spatial coordinates
(X, Y , Z), color and visibility period (named as Time).
Each data point can be assigned to an instance of this visual
space. In the hypothesis space, the user can use a simple one-
to-one mapping function from data space to visual space. It
is also possible to scale data values to better fit them in
the visual space. In the experimental space, EVA provides
various tools for interacting with and manipulating the visu-
alization in order to do a visual search and find interesting
patterns. These mechanisms include tools and techniques
such as zoom, pan, rotation, choosing color palette, scaling,
camera features, external visual aids such as Google Maps
and also some textual helpers such as an information panel.

EVA is a web–based tool developed at CMU’s CREATE
Lab [1]. It is a part of Explorables [2] collaborative which
consists of various projects aiming at interactive visual rep-
resentations of large datasets. EVA is accessible from http:

//eva.cmucreatelab.org. It is written in JavaScript and
HTML. It uses a selection of color palettes presented in
Color Brewer [9]. It also uses the WebGL–based Three.js [4]
library for its graphical engine. Choosing web–based tech-
nologies has been helpful in sharing EVA with other ex-
perts and incorporating their suggestions during develop-
ment phase. EVA fully utilizes the GPU and RAM in order
to visualize large datasets without sacrificing its response
time. Currently, it can handle data sizes of up to a few mil-

Figure 2: EVA’s main screen.

lion points consisting of tens of dimensions. Figure 2 shows
a screenshot of EVA in a browser.
Choosing the right dataset for EVA has been based on sev-

eral factors. First, we wanted a dataset large enough to be
beyond the processing capacity of usual visualization tools,
yet not too large to complicate the development of our first
prototype. As current tools are usually limited to visualizing
a few tens of thousands of objects, we chose a limit around a
few millions of points for our dataset. The second factor in
choosing a dataset is its complexity. A dataset with a few di-
mensions (say 4) can be visualized completely using spatial
dimensions and color. On the other hand, manually select-
ing and navigating through hundreds or more dimensions
is tedious and very complicated. Therefore, we limited the
datasets dimension cardinality to tens of dimensions. It is
also important to chose a meaningful dataset acquired from
real world measurements. This can lead to relevant and use-
ful knowledge discovery. Also, the analyst can benefit from
her expertise in the contextual information accompanying
that dataset. Finally, the data should have some meaning-
ful representation in the spatial space, otherwise a purely
visual exploration may not be as beneficial.
Based on these characteristics, we chose United States

Census Longitudinal Employer–Household Dynamics (LEHD
[3]) dataset. This dataset provides information on employ-
ers and employees across country. This information includes
categories such as employees earning, age, ethnicity, educa-
tion level, etc1. It is aggregated over census blocks which
are small geographical regions usually equivalent to a city
block. Also, the data is produced yearly, therefore provid-
ing enough details both on the spatial and temporal levels.
This dataset is being used by a wide span of scientists and
analysts from economists to urban researchers. As such, it
can be used with a rich set of contextual knowledge from
various fields and therefore it can be a good candidate for
doing meaningful knowledge discoveries. Currently, the vi-
sualization tools dedicated to LEHD are limited and they
often work on aggregations of the original data, hence they
do not visualize it with fine details. The LEHD dataset in
its entirety is very large (more than a 100GB). Therefore we
have limited our work to the state of Pennsylvania2. This

1Details of LEHD data structure is available
at http://lehd.ces.census.gov/data/lodes/LODES7/
LODESTechDoc7.0.pdf
2Particularly to the residence–based workforce informa-
tion subsection of LEHD. For Pennsylvania, this dataset is
around 300MB.
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Figure 3: Earnings more than $3333 per month
for Pennsylvania. Each dot represents the center
point of the corresponding census block. Red areas
show regions with a higher percentage of residents
in high–end income range. The color palette on the
right shows the minimum percentage of employees
with the aforementioned income level in each census
block.

subsection of LEHD has around 2.8M data entries and 44
dimensions. Next, we will go through some examples of us-
ing EVA on LEHD for understanding the data better and
then doing discoveries as we interact with the data.

Figure 4: Earnings more than $3333 per month for
Pittsburgh.

The first example is a simple visualization of income (Fig-
ure 3). Each dot represents one instance of data. The longi-
tude dimension of each data instance is assigned to the vi-
sual dimension X (the horizontal orientation of the figure).
The latitude dimension is assigned to the visual dimension
Y (the vertical orientation of the figure)3. The visual di-
mension of color represents the ratio between the number of
jobs with an income of $3333 or more per month with the
total number of jobs. Therefore a pixel with bright red color
shows a relatively wealthy neighborhood while a pixel with
yellow color shows a poorer area. In general, there are 2.8
million pixels in the visualization. From this visual repre-
sentation, it is easy to locate the major population poles of
the state, such as Philadelphia on the bottom right corner
or Pittsburgh on the left side. It is also possible to dis-
tinguish the major geological features of the area such as
the distinctive Appalachian Mountains in the middle of the

3The latitude and longitude measures represent the central
location of the corresponding census block.

map. The other important observation is the non–uniform
distribution of wealth throughout the state. Most of high–
end income earning neighborhoods are concentrated in the
suburbs of Philadelphia and Pittsburgh while the regions in
the middle are usually less populated and often have a lower
amount of income. Figure 4 shows a zoomed in version of
Figure 3, focusing on Pittsburgh. This picture also includes
a Google Map helper in the background. This layer can be
helpful in distinguishing the exact location of each census
block. Based on this map, the main wealthy neighborhoods
are seen in the middle of the picture, where the University
of Pittsburgh and Carnegie Mellon University are located.

Figure 5: Earnings more than $3333 per month (as
color) combined with total number of jobs (as ele-
vation).

In Figure 5, we have utilized all the 3 spatial dimensions.
Here, besides assigning longitude and latitude to X and Y ,
we have assigned total number of jobs in each location to
dimension Z. By rotating the visualization, the user can
look at the high–income levels (as color) and total number
of jobs (as elevation) at the same time. Through this rep-
resentation, it is again easy to find the major population
hubs. Also, it is more evident that there is a more complex
relationship between income level and number of jobs. For
example by looking at Philadelphia at the bottom right cor-
ner, we can see areas of high income (red) and low income
(yellow) with almost the same number of jobs adjacent to
each other. Another interesting example is State College,
home of Pennsylvania State University, located at the cen-
ter of the map. This small city has a relatively low number
of jobs, but the color of those jobs shows a high–income
region, representative of its higher education employment
sector. It should be noted that most of the visual objects
in a point cloud are obscuring each other, therefore it is es-
sential to have interactive capabilities. Through rotation,
zooming and panning, the user has a much better chance of
understanding the general outline of the visual space.
The last visual dimension available in EVA is Time. By

assigning a data dimension to time, we can create an ani-
mation and control it through the bottom slider. Figure 6
shows the high–end income range percentages over a course
of 10 years. As it is evident from comparing Figure 6(a) to
Figure 6(b), the percentage of people with higher incomes
is increasing over the decade. This can be due to the in-
flation in income or a real increase in the overall earnings.
The time slider plays an important role in revealing this
pattern as the user should go back and forth in time multi-
ple times to better perceive the gradual change in earnings.
Again, the interactive nature of visualization is vital in the
knowledge discovery step. The same data is represented in a
different view in Figure 7. Here, instead of the usual assign-
ment of years to Time dimension, we have assigned it to Z.
This results in a series of planes dissecting the data accord-
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(a) 2002

(b) 2011

Figure 6: Earnings more than $3333 per month in
years 2002 and 2011.

Figure 7: Earnings more than $3333 per month. The
year dimension from the data is assigned to the Z
dimension in the visual space.

ing to their year. This is useful for looking at the general
trend. For example, the region in the front of the picture in
Figure 7 is Philadelphia. We can see the lower layer (corre-
sponding to year 2002) has more blue dots (corresponding
to poor neighborhoods). As we go up in the layers we are
going forward in time and we can see the shrinking of blue
regions and the growth of higher–income neighborhoods.

Figure 8 looks at the distribution of races in the city of
Philadelphia over the course of three years (from 2009 to
2011). The green regions represent neighborhoods with a
majority of Whites while purple regions show neighborhoods
with a majority of workforce from African American commu-
nity. The first observation is the segregation between these
two communities. Neighborhoods are mostly dominated by

(a) 2009

(b) 2011

Figure 8: Distribution of employees based on their
race. Purple areas represent neighborhoods with a
majority of African American workforce while the
green areas represent neighborhoods with a major-
ity of Whites. (a) shows this distribution in year
2009 and (b) is for year 2011.

only one race while in between there are some small border
neighborhoods that accommodate a more balanced mixture
of both races. The other observation is the relatively fast
shifts in the population proportions of some border neigh-
borhoods within a course of a few years. For example, the
region marked as A in Figure 8(a) shows an area that is
mostly composed of African Americans in 2009. But as we
go forward in time to year 2011 (Figure 8(b)), this area
becomes a more mixed race neighborhood. The opposite
phenomena is happening in region B where it is changing
from a mixed community to a more single–race neighbor-
hood. During some informal discussion with a Philadelphia
resident, he hypothesized that this population shift may be
related to a new wave of African immigrants settling in the
west side of the city.
The next example shows an accidental discovery. Here,

the exploration was not driven by a hypothesis. Instead, it
was the exploratory nature of the tool that led to an un-
expected visualization. This later resulted in formation of
new hypotheses. When working with geolocated data such
as LEHD, it is common to visualize the data on a map. Fig-
ure 9 shows a visualization of LEHD data in an effort to
view it outside of a geo–spatial representation. Here, each
dot corresponds to one census block (i.e. neighborhood) on
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Figure 9: The relationship between race, gender,
and total number of jobs. The dots on the right–
hand side represent neighborhoods where a major-
ity of workforce are men. The dots on the left–hand
side are areas where the majority of working people
are women. The elevation shows the relative total
number of jobs. The color shows the percentage of
African Americans in that neighborhood (red shows
higher percentage of African Americans in that cen-
sus block).

the map. The number of jobs for males has been assigned
to the X dimension and the number of jobs for females has
been assigned to Y dimension. Furthermore, the total num-
ber of jobs in each neighborhood has been assigned to the
Z dimension. Viewing the final visualization from a per-
pendicular angel, we come up with Figure 9 where a dot
on the right–hand side represents a neighborhood with a
higher percentage of workforce being male, while a dot on
the left–hand side shows a region with a higher percentage
of females in the workforce. The elevation shows the total
number of jobs. As it can be expected, most of the neigh-
borhoods are located in the middle, with an almost 50–50
percent distribution of jobs between men and women. But
the unexpected feature of this visualization is the one–sided
distribution of red dots. Here, we have assigned number of
jobs for African Americans to the Color dimension. There-
fore the red dots show neighborhoods with a majority of
workforce from African American community. Seeing that
most of these dots are on the female side of the graph we
can hypothesize that either there is a high unemployment
rate among African American men or that they are work-
ing in areas with a majority of workforce from other races,
hence their presence is not visible. In either case, the ex-
ploratory nature of EVA plus the ability of going through
many visualizations in a short amount of time was crucial
in creating this visualization and therefore forming new hy-
potheses about the nature of the data. It can be imagined
that even randomly going through several different projec-
tions of the data can reveal some interesting patterns that
are not evident in the first place, due to the lack of initial
hypotheses in the mind of the analyst.

4. DISCUSSION
We can summarize EVA’s contributions in three aspects:

high resolution, explorability, responsiveness. High resolu-
tion is the ability of EVA to show as many data points as
possible on a screen without aggregating them into overall
summaries. The aggregation technique is used in many tools
to improve their ability in working with larger datasets, but
it also reduces the clarity of final picture and hides the fine
details of the data. Knowledge discovery can be very de-
pendable on the amount of detail a user can see. In the

explorability aspect, EVA provides usual interactive tech-
niques (e.g. zoom, pan, etc.) plus easy navigation between
multiple projections of data through its dimension assign-
ment tool. Our initial experiments showed that the ability
of viewing data from multiple perspectives is crucial in un-
derstanding the data and finding the “wow”moments where
the analyst observes some unexpected pattern. These mo-
ments usually lead to deeper investigations, new hypothesis
generation, and sometimes to new discoveries. Finally, the
responsiveness aspect of EVA fully utilizes its other features.
Knowledge discovery is a memory intensive process. The an-
alyst should form a series of assumptions and questions in
her mind, and then create a series of visualizations, looking
at one characteristic of the data in each step. It is important
to remember all of these steps and their possible interpre-
tations. If there is a long waiting period between each two
step, the user can easily forget her previous observations and
hence the general knowledge discovery process will be inter-
rupted. EVA is designed from the ground up to address this
issue by fully utilizing local computing resources available in
order to make fast and smooth transitions from one visual-
ization to the other. This is a fundamental feature in data
exploration, specially when data size and complexity grows.
It is worth noting that EVA should be used in conjunc-

tion with a statistical tool. The main purpose of EVA is
to facilitate hypothesis generation. It will also show visual
representations of the data so the analyst can perform an
initial test for each hypothesis, but coming up with a final
accurate and reliable answer is the job of a statistical tool.
Another important note about EVA is the role of experts
in shaping it. From its inception, EVA has benefited from
many experts. The choice of data, its visual characteristics
(such as color palettes used), . . . has been formed through
many joint sessions with analysts from various backgrounds.
Their realtime feedback while working with their own data
on EVA has also been tremendously helpful in recognizing
EVA’s capabilities as well as its limitations. This collabora-
tion would remain an ongoing part of EVA during the future
expansions.
We are going to expand EVA in two major aspects: scaling

and navigation in the action space. Currently, EVA down-
loads the full dataset into the local memory. In this way
it can fully utilize clients local resources such as GPU and
RAM. But this approach is limited to moderate data sizes
of a few million points. Larger datasets take a long amount
of time to download and they often cannot be fitted to lo-
cal memory. Therefore, in the future EVA should support
a client/server architecture which actively limits data trans-
mission based on the screen resolution and user needs. This
screen–aware method would not be accurate and complete,
but can be scaled for large datasets. Another addition to
EVA is a history function. When users explore a dataset
they generate many different visualizations and sometimes
they need to compare several views together in order to form
a better mental model. A history function can help them
navigate in their action space. This can also augment users
working memory and improve the quality of their knowledge
discovery.
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ABSTRACT
Research in interactive machine learning has shown the effective-
ness of live, human interaction with machine learning algorithms in
many applications. Metric learning is a common type of algorithm
employed in this context, using feedback from users to learn a dis-
tance metric over the data that encapsulates their own understand-
ing. Less progress has been made on helping users decide which
data to examine for potential feedback. Systems may make sug-
gestions for grouping items, or may propose constraints to the user,
generally by focusing on fixing areas of uncertainty in the model.
For this work-in-progress, we propose an active learning approach,
aimed at an interactive machine learning context, that tries to min-
imize user effort by directly estimating the impact on the model of
potential inputs, and querying users accordingly.

With EigenSense, we use eigenvector sensitivity in the pairwise
distance matrix induced by a distance metric over the data to es-
timate how much a given user input might affect the metric. We
evaluate the technique by comparing the output points it proposes
for user consideration against what an oracle would like to choose
as inputs.

Categories and Subject Descriptors
I.5.5 [Pattern Recognition]: Implementation—Interactive Systems;
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Human Factors

Keywords
Active Learning, Metric Learning, Interactive Machine Learning

1. INTRODUCTION
The field of interactive machine learning has demonstrated the

effectiveness of using human interaction to improve machine learn-
ing results, and simultaneously using machine learning algorithms
to improve user experiences. Example systems help people group
or model their data without having to understand machine learning
techniques [14].

One concept in the machine learning apparatus underlying many
examples is metric learning. Understanding the similarity between
objects is a powerful way to model them for grouping or label-
ing. In metric learning, a distance function over the data is learned
from side information about the data, often in the form of con-
straints for which objects are similar. For an interactive context,

the algorithm must update incrementally by making improvements
iteratively with increasing user feedback.

User feedback is expensive, since human throughput at review-
ing data is far lower than a computer’s throughput at analysis. In
order to maximize utility of user efforts, active learning researchers
develop techniques to query users for feedback in ways that will
help the machine learner. A common approach is to query users
about points chosen so that the user feedback will resolve uncer-
tainty in the model.

Emphasizing the interactive learning perspective, our approach
keeps the user in control, providing suggestions only when the user
initiates a direction of inquiry. We target our active learning method
toward predicting the impact of any given user input. Using our
method, a user can judiciously spend the effort of developing feed-
back on data that will affect the underlying model as much as pos-
sible.

In this work-in-progress, we first introduce EigenScore, a mea-
sure that leverages “eigenvector sensitivity” to predict how much
a potential user input will change an underlying metric learning
model. We then propose EigenSense, which uses EigenScores to
guide a user toward making the most productive feedback while
minimizing his or her effort (in terms of data points examined). Fi-
nally we provide two types of evidence of the efficacy of this algo-
rithm. First, we compare EigenScores to the ground-truth of what
they estimate: the amount that particular constraints would change
the metric learning model. Second, we show with simulations that
the few points selected for user review by EigenSense often include
the best possible choices as evaluated by an oracle.

2. MOTIVATION: EIGENVECTOR SENSI-
TIVITY TO FIND CRITICAL POINTS

The eigenvectors of a matrix have been used to represent its un-
derlying structure for applications in many domains including con-
nectivity graph analysis [33], face recognition [43], and clustering
[47]. The eigenvectors of symmetric matrices A for which entry
Ai j represents some measure of distance between objects i and j is
of particular relevance. For example, the PageRank [33] algorithm
uses an n× n pairwise matrix to represent the transition probabili-
ties between pairs of the n webpages. Here entry Ai j corresponds
to the probability of landing on node (page) j during a length-one
random walk, having started at node i. Raising that matrix to the
power k gives a matrix of the probabilities of landing on node j
having started a length-k random walk at node i. Increasing powers
of Ak will show the asymptotic behavior of flow through the graph.
Conveniently, following from the definition and orthogonality of
eigenvectors, the dominant eigenvector approximates this quantity.
For a real, symmetric matrix A, suppose we have the eigenval-
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ues λ1, . . . ,λn sorted in decreasing order, and their corresponding
eigenvectors v1, . . . ,vn. Because the eigenvectors are orthogonal,
any vector x ∈ R

n can be written as a linear combination of the
eigenvectors, with coefficients αi. We can observe the asymptotic
behavior:

x = α1v1 +α2v2 + . . .+αnvn

Ax = α1Av1 +α2Av2 + . . .+αnAvn

Akx = α1λ k
1 v1 +α2λ k

2 v2 + . . .+αnλ k
n vn

= α1λ k
1

(
v1 +

α2

α1

(
λ2

λ1

)k
v2 + . . .+

αn

α1

(
λn

λ1

)k
vn

)

Note that because the dominant eigenvalue, λ1 ≥ λi, i = 2 . . .n in
the final sum, the v1 term dominates.

When studying population dynamics, biologists take advantage
of this fact with a matrix L, called a “Leslie” matrix, where each el-
ement Li j represents an organism’s survival prospects to age i from

age j 1. To see the equilibrium point of a population, biologists
study the dominant eigenvector of this matrix [22].

Extending this technique to see how the population can be af-
fected by environmental factors, biologists adjust survival rates at
different times in the lifecycle by editing the matrix, and reconsider
the new dominant eigenvalue. This sensitivity of the eigenvalue to
change in particular matrix entries is the eigenvalue sensitivity [22].

Motivated by biologists’ successes with eigenvalue sensitivity in
Leslie matrices, we consider the behavior of the dominant eigen-
vector of our related n×n pairwise distance matrices, and we adapt
the concept of sensitivity to the context of active metric learning.
We will use the dominant eigenvector of a pairwise distance matrix
as a standin for its overall structure, and calculate the sensitivy of
that eigenvector with respect to changes in entries of that matrix.
Since each entry corresponds to a pair of data points, we will use
this approach to estimate how individual user inputs, i.e. user con-
straints that certain pairs of points have small distances between
them, will affect the structure of the distance matrix and the under-
lying distance metric.

3. RELATED WORK
This work builds on previous efforts in both machine learning

and human-computer interaction. We begin with an overview of
related work in interactive machine learning and then discuss met-
ric and active machine learning.

3.1 Interactive Machine Learning
Interactive machine learning researchers strive to use human in-

teraction with machine learning to improve machine learning re-
sults and improve user experiences, leveraging computers’ raw ana-
lytical power and humans’ reasoning skills to achieve results greater
than either alone [39]. Several methods coupling machine learning
techniques with visualization to cluster or classify data have been
proposed [6, 10, 17]. Systems have been built for grading [11], net-
work alarm triage [5], building social network groups [4], ranking
search results with user context [2], managing overeating [16], and
searching for images [3].

Another vein of this research, from visual analytics, focuses on
data analysis tasks, and on effectively leveraging user interaction to
refine an underlying model, generally by adjustments of layouts or
clusterings [14, 20, 23, 13].

1The matrix represents different age groups’ rates of survival and
reproduction by setting the first row to the fertility rate of each age
group, and the lower off-diagonal entries to organism survival prob-
abilities from one age group to the next.

All of this work integrates human reasoning with machine learn-
ing without asking the human to understand the machine learning.
However, these systems do not offer strong active learning support
to help the user give the most efficient feedback. The EigenSense
approach aims to provide this support by guiding the user toward
the most important data to review.

3.2 Metric Learning
Many of the examples above of interactive machine learning

use metric learning algorithms at their core. This powerful ap-
proach has been the subject of much research since 2003 [8, 12,
19, 25, 34, 38, 42, 45, 46, 48, 51, 52] and has proven applicable
in many real-world application domains including information re-
trieval, face verification and image recognition [18, 26, 29].

Most of these methods assume that the machine learner is given
additional information beyond the data itself, most often as pair-
wise constraints between data points, i.e. that certain pairs should
or should not be close together. With that information, metric learn-
ing techniques learn a distance function optimized to produce rel-
atively small distances between points that belong close together,
and large distances between those that belong far apart [52].

It is generally assumed that a domain expert can easily provide
pairs of similar data points and pairs of dissimilar data points, but
that assumption implies a perfectly accurate user who is motivated
and available to review all of the data. This work-in-progress be-
gins to address this gap by introducing a technique for paring down
what points an expert would actually have to review in an inter-
active machine learning context by trying to guide a user toward
constraints that will be most impactful to the distance metric.

3.3 Active Learning
Active learning is a form of semi-supervised machine learning in

which the learner iteratively queries the user for additional informa-
tion while building its model. The key idea behind active learning
is that an algorithm can achieve greater accuracy or performance
with fewer training labels if it is allowed to choose the most helpful
labels [36].

A common approach is to select the data points that are most un-
certain to classify. Different measures of the uncertainty are based
on the disagreement in the class labels predicted by an ensemble
of classification models [1, 32, 37], by distance to the decision
boundary [15, 35, 41], by the uncertainty of an unlabeled exam-
ple’s projection using the Fisher information matrix [31, 53], or
with Bayesian analysis that takes into account the model distribu-
tion [24, 30, 40, 54].

Active learning and metric learning come together in several
recent works, where authors determine what the user should see
based on uncertainty of labels and coverage of the dataset [21], or
the median points in groups with the same label [44]. Yang and
Jin select pairs of points for feedback based on the uncertainty of
deciding their closeness [50].

In a sub-category of active learning algorithms called active clus-
tering, the end goal is a clustering instead of classification, and the
common approach is to gather constraints by iteratively querying
the user about pairs of points. Points are chosen by uncertainty
[28], or by most informative example pairs [9]. One work by Xu,
et al., is especially related to ours. The authors learn a two-class
spectral clustering with active learning by examining the eigenvec-
tors of the pairwise distance matrix to find points on the boundary
of being put in either cluster [49].

Generally, active learning methods are based on querying the
user for one unit of feedback at a time. In our approach the user
plays an active role in deciding what feedback to provide: no sug-
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gestions are given without an initial seed point of interest from the
user, and then, several suggestions are provided for the user to pe-
ruse.

4. APPLICATION CONTEXT
The EigenSense method is best understood within a real inter-

active learning context. In prior work, Brown et al. created Dis-
Function [14], a system that shows an analyst high-dimensional
real-valued data in a 2D projection, and learns a distance function
iteratively though user feedback. Feedback is provided by drag-
ging together points that should be closer together. The method
is effective with appropriate user feedback, but the user is given
no information about what points would be helpful to the metric
learning backend.

For illustration, we have integrated EigenSense into Dis-Function.
When a user clicks a point of interest, EigenSense responds by
showing several points that may be of interest relative to the first.
Figure 1 presents a screenshot of this modified Dis-Function, specif-
ically the data projection portion. The data have been arranged us-
ing multidimensional scaling (MDS), and colored based on a spec-
tral clustering. The user has clicked the point marked by a red X. In
response, EigenSense adds colored squares showing which points
may be of interest relative to that X. Darker colors indicate a higher
eigenvector sensitivity score, or EigenScore (see Section 5.1).

These predictions of which points could provide the strongest
update to the model are intended to guide the user towards giving
the machine learner fruitful feedback, and taking best advantage of
precious expert user time.

5. THE EIGENSENSE METHOD
In our interactive machine learning context, we have presented

a user with data and need useful side information to improve our
learned model. More specifically, in the context provided by Sec-
tion 4, we assume a user examines a visualization of data and no-
tices points of interest, perhaps outliers, cluster exemplars, or points
aligned with personal expertise. We aim to answer, given one point
of interest selected by the user, which are other points that the user
should examine. We chose this interaction paradigm for two rea-
sons: first, the user guides the process as opposed to simply be-
ing used for point comparisons, and second, having an initial point
sharply reduces the computational complexity (see Section 5.2). In
deciding which points to suggest for user examination, our ideal is
to uncover the point that would make the strongest update to the
model with the user’s feedback, leveraging expertise efficiently to
minimize effort.

In this section, we introduce a technique using eigenvector sensi-
tivity on a pairwise distance matrix to provide these predictions of
strong model updates. First we associate a score (called the Eigen-
Score) with any pair of data points. The EigenScore of a pair is
designed to predict the strength of a model update corresponding
to user feedback about that pair. We then present the EigenSense
algorithm, which uses EigenScores to recommend top candidate
points to the user.

5.1 Calculating EigenScores
The EigenScore between two points represents our prediction for

how strongly a change in distance between them would affect the
underlying structure of the pairwise distance matrix. Specifically,
it is a measure of the sensitivity of the dominant eigenvector of that
matrix to changes in its elements, which correspond to pairs of data
points.

Given a distance function and a data set with N points, we calcu-

Figure 1: EigenSense demonstrated on an interactive scatter-
plot of projected data – all data points are laid out with mul-
tidimensional scaling (MDS) and colored by a spectral cluster-
ing. The point with a red X is the one the user clicked, ask-
ing what other data should be considered in relation to that
point. The colored squares show the EigenSense response, with
darker colors indicating higher EigenScores (see Section 5.1).
Only the top five percent of scores from each cluster are high-
lighted, helping the user target the most fruitful data to exam-
ine.

late the pairwise distance matrix

D ∈ R
N×N where Di j = distance(xi,x j)

Note that no specific type of distance function is required. To model
how that matrix changes with specific xi and x j assumed to be per-
fectly close together, i.e. because the user specified so with feed-
back, we construct a new distance matrix D′ which is identical to
D, except that we set Di j = D ji = 0. These entries now reflect that
xi and x j should be close to one another.

We next compute the dominant eigenvector for D, called v1, and
for D′, which we indicate with v′1. We compute the cosine similar-
ity between v1 and v′1. Note that we desire a dissimilarity metric,
showing how much v′1 is different from v1, so we define

EigenScore(xi,x j) = 1−CosineSimilarity(v1,v′1)

Algorithm 1 summarizes this process.
Note that computing the function eig(D) to return the dominant

eigenvector is computationally expensive if implemented using fac-
torization methods [27]. Techniques such as SVD [27] and the
Cholesky decomposition [27] return all eigenvectors of the ma-
trix D. However, because computing the EigenScore requires only
the dominant eigenvector (and because we are restricted to a real-
valued symmetric matrix), we can dramatically improve perfor-
mance by using the Lanczos method [27], which returns only the
dominant eigenvector and which we denote eigs(D,1) as in MAT-
LAB.

5.2 Using EigenScores to make EigenSense
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Algorithm 1: EigenScore

Input: Data points xi,x j, distance matrix D
Output: ESi j ∈ [0,1]

1 Calculate v1 = eigs(D,1) [dominant eigenvector]
2 Let D′ = D
3 Set D′

i j = D′
ji = 0

4 Calculate v′1 = eigs(D′,1)
5 Set ESi j = 1−CosineSimilarity(v1,v′1)
6 return ESi j

The EigenScore algorithm maps a pair of points to a scalar value
representing potential impact on the distance metric, and thus im-
plicitly provides a ranking over pairs of points. This section ad-
dresses how to use this ranking with the goal of reducing user ef-
fort.

Calculating EigenScores over all pairs of points is prohibitively
expensive for an interactive context. However, recall that in our us-
age context, the user has selected one point of interest and we must
suggest options for a second point to pair with the first for a po-
tential user constraint. Evaluating possibilities for just the choices
of a second point requires only (N −1) evaluations of EigenScore.
We further limit the number of suggestions the user sees to some
proportion k ∈ (0,1] of the total data to save the user from examin-
ing every point. Rather than returning a fully ranked list of the top
k ∗ (N −1) of the (N −1) total points, we want to choose a diverse
set of points for consideration. Our rationale is that we expect high
EigenScores to correspond to pairs of points where user constraints
would cause big updates to the model, but these may not be good
updates. For example, outliers in the dataset will often contribute to
high EigenScores, but should not necessarily be used in constraints.

To create the desired set of suggestions, we first cluster the data
(using the current learned distance function), then sort the points in
each cluster c by their EigenScore and return the top k ∗ |c| points
within each cluster. This process is detailed in Algorithm 2.

The performance of our implementation is critical to demonstrat-
ing the feasibility of this technique for interactive systems. Our pro-
totype system provides EigenSense recommendations on demand
as response to interaction with a visualization. The current imple-
mentation connects to MATLAB from C# via a COM interface to
take advantage of the Lanczos algorithm for quickly calculating
the dominant eigenvector. Still, as an example of performance ca-
pability, on a laptop with an Intel i5 480M processor, for a dataset
of about 200 points with about 20 dimensions, an EigenSense re-
sponse takes about one second.

Algorithm 2: EigenSense

Input: Initial point xi, distance matrix D, set of clusters C,
threshold k

Output: S, a set of model-critical points

1 foreach cluster c ∈C do
2 foreach point x j ∈ c do
3 Compute ESi j = EigenScore(xi,x j,D)

4 Let Sc be the set of k×|c| points with the highest ESi j

5 Let S =
⋃

Sc
6 return S

6. EXPERIMENTS AND RESULTS
We validate the accuracy and effectiveness of our proposed method

through two experiments on test datasets from the UCI Machine
Learning Repository[7]. First, we compare EigenScores against
actual values of the quantity they estimate and see that they could
be an effective low-cost estimator of model change. Second, we
evaluate the accuracy of EigenSense by considering the quality of
the sets of points it offers to users compared against the ground-
truth best points. We show that guided by EigenSense, a user could
pick high-quality inputs while reviewing small amounts of data.

6.1 Experiment 1: Compare To Ground Truth
In this experiment we evaluate the EigenScores by comparing

them directly to the value they are attempting to estimate. Recall
that in our interactive metric learning context, EigenScores are an
estimate of how much the distance matrix, as a stand-in for the dis-
tance metric itself, would be changed by constraining a given pair
of points. The ground truth is prohibitively expensive to calculate
for an interactive system, but can be prepared offline.

For three datasets, starting from scratch with no constraints, we
used our prototype system (with interactive metric learning based
on Brown et al. [14]) to calculate for each possible pair of points
the actual change in distance function resulting from constraining
the pair. The graphs in Figure 2 show the comparison of these
values to the EigenScores. We use weighted Euclidean distance
functions, thus the initial distance function is parameterized by the
vector Θinit = (1/M, ...,1/M) of length M. In the graphs, the hor-
izontal axis is the change in the distance metric from applying the
constraint and the vertical axis is the EigenScore:

1−CosineSimilarity(Θinit ,Θpost_constraint)

Although the correlations between EigenScores and actual dis-
tance metric change are not obvious linear relationships, it is ap-
parent from visual inspection that the quantities are related. This
first pass evaluation shows the promise of EigenScores as an esti-
mate of distance metric change, which implies that it could be an
inexpensive way to predict model change for interactive machine
learning.

6.2 Experiment 2: Evaluate Suggestion Qual-
ity

The goal of this experiment is to determine the quality of EigenSense
recommendations by comparing them to the choices an oracle would
make. Given an oracle that can rank all user feedback options in
terms of which yield the best distance functions, we look to see
how the EigenSense recommendations rank in that list.

We simulate choices of a point of interest xi by the user, and then
compute both the oracle’s ranking of all possible constraint pairs
with xi, and the set of EigenSense options that would be presented
to the user. Specifically, the oracle takes advantage of the labels for
our test datasets to calculate, for all pairs of constraints that include
xi, the accuracy (with k-NN) of the distance metric resulting from
an update with the given constraint. That is, given one point xi,
the oracle applies the system’s metric learning algorithm with each
constraint pair (xi,x j) ∀x j , and evaluates each resulting distance
function at classifying the data with k-NN. The accuracy scores
of these evaluations provide a ranking over the constraint pairs. We
compare the EigenSense options against the oracle ranking by find-
ing the EigenSense recommendation with minimum oracle rank.

Figure 3 shows the results of our experiment. Each graph line
corresponds to a different dataset, and each plotted point represents
an average over ten simulations, each of which simulated ten user
inputs. Simulated users picked a first point randomly then some
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Figure 2: Experiment 1 – In this comparison between EigenScores and the quantity they estimate, each point in each graph represents
a pair of data points from the appropriate dataset. The horizontal axis shows the actual amount the underlying distance function
changes when a given pair of points is constrained together. The vertical axis shows the EigenScore for that pair of points.

(not necessarily optimal) EigenSense recommendation for the sec-
ond. In total, each plotted point represents 100 uses of EigenSense.
The horizontal axis is the k parameter of EigenSense (see Algo-
rithm 2 and Section 5.2), which determines how many points will
be shown to the user. Because the vertical axis shows the best or-
acle ranking of the EigenSense points, lower scores are better. It
is no surprise that with larger values of k, where the user is being
shown more points, the opportunity for the best-ranked points to
be included is higher. Using a low value of k means showing the
user few points and saving effort, whereas using a high value means
showing more points but having a better chance to show the abso-
lute best ones. The results of this experiment suggest that, depend-
ing on the dataset, a user could give strong feedback to a metric
learner while only reviewing less than ten percent of the data, or in
some cases, substantially less.

Figure 3: Experiment 2 – The horizontal axis shows values of
the k parameter to EigenSense, i.e. how much data is shown
to the user. The vertical axis shows the minimum (best) rank
of the EigenSense recommendations in the oracle’s ordering of
all possible point pairs. Note that, as expected, as more data is
shown to the user (k increases), there is more chance of the best
possible options being revealed (rank decreases). Even with a
small amount of data revealed, the EigenSense suggestions pro-
vide strong options.

7. FUTURE WORK

Although we have collected the presented evidence of EigenSense’s
effectiveness, there are opportunities for improving the algorithm
itself. For example, there are several variations on how to generate
pairwise distance or similarity matrices. Further, the performance
of the implementation could be improved by using a library im-
plementation of the Lanczos method for calculating the dominant
eigenvector, instead of using MATLAB via COM calls.

The performance improvement is critical for the main thrust of
future work, which is to complete the evaluation of the technique by
testing it with human subjects. In particular, participants in a user
study will use the tool to cluster some images with known classes.
We can then evaluate their comfort with the tool, confidence in the
recommendations, and progressive accuracy of the distance metrics
learned from their inputs to see if they do better with or without
EigenSense.

8. CONCLUSION
This paper contributes to the study of interactive metric learn-

ing by applying active learning to reduce the workload of the hu-
man actor. We introduced the concept of EigenScores based on
eigenvector sensitivity of distance matrices, and then applied these
to create the EigenSense algorithm, which identifies and recom-
mends points for user consideration given an initial exploratory di-
rection. We presented evidence of the effectiveness of the algo-
rithm by demonstrating its correlation with ground-truth values of
the quantity it estimates, and then by showing the frequency with
which EigenSense presents the best possible option to users. Our
results indicate that EigenSense could help save human workload
by vastly reducing the number of data points to be considered while
maintaining near-optimal metric learning results.
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ABSTRACT

Crowdsourcing is popularly defined as a paradigm that uti-
lizes human processing power to solve problems that com-
puters cannot yet solve. While recent research has been ded-
icated to improve the problem-solving potential of crowd-
sourcing activities, not much has been done to help a user
quickly extract the valuable knowledge from crowdsourced
solutions to a problem, without having to spend a lot of time
examining all content in details. Online knowledge-sharing
forums (Y! Answers, Quora, and StackOverflow), review ag-
gregation platforms (Amazon, Yelp, and IMDB), etc. are
all instances of crowdsourcing sites which users visit to find
out solutions to problems. In this paper, we build a system
CrowdMGR that performs visual analytics to help users
manage and interpret crowdsourced data, and find relevant
nuggets of information. Given a user query (i.e., a prob-
lem), CrowdMGR returns the solution, referred to as the
SolutionGraph, to the problem as an interactive canvas of
linked visualizations. The SolutionGraph allows a user to
systematically explore, visualize and extract the knowledge
in the crowdsourced data. It not only summarizes content
directly linked to a user’s query, but also enables her to ex-
plore related topics within the temporal and topical scope
of the query and discover answers to questions which she
did not even ask. In the demonstration, participants are in-
vited to manage and interpret crowdsourced data in Stack-
Overflow and Computer Science Stack Exchange, question
and answer site for students, researchers and practitioners
of computer science.

1. INTRODUCTION
Crowdsourcing is the practice of soliciting services, ideas,

solutions, or content from an undefined, generally large group
of people in the form of an open call. It is also popu-
larly defined as a paradigm that utilizes human processing

power to solve problems that computers cannot yet solve [7].
Crowdsourcing has received a lot of attention lately from
researchers for its potential in solving problems, often un-
solvable by computers, by tapping in to the collective intelli-
gence of the crowd. Efforts have been dedicated to designing
the optimal task and workflow, recruiting people by study-
ing behavioral and cognitive biases, incentivizing the crowd,
processing crowdsourced data to sift value, etc. However,
not much has been done to help a user quickly extract the
valuable knowledge from crowdsourced solutions to a prob-
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lem, without having to spend a lot of time examining them
in details. Online knowledge-sharing forums (Y! Answers,
Quora, and StackOverflow), review aggregation platforms
(Amazon, Yelp, and IMDB), etc. are all instances of crowd-
sourcing sites which users visit to find out solutions to prob-
lems. For example, a user may visit Stack Overflow1 to
find the answer to the problem Is Java “pass-by-reference”

or “pass-by-value”?. Stack Overflow has 47 solutions to the
problem and it would not be possible for the user to find
the pertinent answer without examining the detailed tex-
tual information, often conflicting, at her disposal. Simi-
larly, a user may visit Yelp2 to find the answer to the prob-
lem Is “B Patisserie” a healthy bakery to visit in the San

Francisco neighborhood?. Yelp has over 500 solutions to the
problem (i.e., reviews for the bakery) that the user needs
to go through in order to make her decision. Note that,
the crowdsourced data in Stack Overflow concerns facts and
information while that in Yelp is more about opinion and
judgment. However, the task of eliciting the “solution” for
the“problem”from the crowdsourced data remains the same
across both the applications.

In this paper, we develop a framework that addresses this
need. Our system, called CrowdMGR

3 performs analyt-
ics to help users manage and interpret crowdsourced data,
and find relevant nuggets of information. Given a user query
(i.e., a problem), CrowdMGR returns the solution, referred
to as the SolutionGraph

4, to the problem as an interactive
canvas of linked visualizations. The purpose of Solution-
Graph is to enable a user to quickly access the knowledge
in the crowdsourced data, in addition to the information
that current crowdsourcing sites showcase. Over the past
decade, researchers have developed techniques to summa-
rize user-generated content in review sites, internet forums,
blogs, etc. [3][5][6]. SolutionGraph not only summarizes
content directly linked to a user’s query, it also enables her to
explore related topics within the topical and temporal scope
of the query and discover answers to questions which she
did not even ask. We present our SolutionGraph as an
intuitively intelligible visual form, that incorporates graph
drawing methods and geometric techniques for high dimen-
sional data visualization, in order to communicate complex
analytical information effectively. Its interactive exploration
feature allows a user to seamlessly navigate from the high-
level overview to the desired levels of granularity and back.

1http://stackoverflow.com/
2http://www.yelp.com/
3Abbreviated from Crowd Manager
4Name draws inspiration from Knowledge Graph
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Figure 1: Example SolutionGraph for a query about a Japanese Restaurant in San Francisco; (i) Topical
Analysis and (ii) Temporal Analysis of the Answer Node {Slow Service, Open Late, Worth the Wait}

Let us explain our system CrowdMGR and Solution-

Graph with a simple illustrative example, presented in Fig-
ure 1. Suppose, a user wants to find out if she will like to visit

a particular Japanese restaurant “Katana-Ya” in San Fran-

cisco. Given her query, the SolutionGraph in Figure 1
not only returns the reviews for the restaurant, but also re-
turns two other related restaurants - one Japanese, “Sugoi
Sasha” and one Asian Fusion, “Hakkasan” - in the neighbor-
hood and the reviews for them. Since the number of reviews
for a restaurant is huge, we aggregate the reviews based on
content similarity. If the user is interested in eating Sashimi
at a Japanese restaurant in San Francisco at that time, the
graph helps her discover a restaurant that meets her prefer-
ences better than the one she is querying. Note that, there
exists a user who has reviewed both the query restaurant un-
der consideration and the related Japanese restaurant, the
former for Sushi and the latter for Sashimi. If the user is
interested in eating only at the particular restaurant she is
querying, the graph helps her quickly access the broad sum-
mary of the feedback it has received. SolutionGraph also
allows the user to interact with the system and obtain a
detailed insight of the temporal and topical trends of each
aggregate answer, as shown in Figure 1-(i) and Figure 1-(ii).
Topical analysis of the answer node {Slow Service, Open
Late, Worth the Wait} in Figure 1-(i) helps the user access
the relevance of the keywords in each of the reviews, that
are aggregated. If the user is interested in reading a review
about the keyword ‘Slow Service’, she may read Review 3
in details. Moreover, since the plot suggests that Review
3 and Review 4 are similar in their content, she can read-
ily filter out Review 4. Figure 1-(i) reveals the temporal
trend of the answer node {Slow Service, Open Late, Worth
the Wait}. The user may note that the keyword ‘Open Late’
has been frequently mentioned in the reviews in the summer
months, while the frequency of the keyword ‘Slow Service’
has steadily increased over time.

The two main technical challenges in achieving the objec-
tive of our system is: (i) how to select the solution nodes for
the user query, i.e., problem node in the SolutionGraph;
and (ii) how to discover the problem nodes related to the
user query in the SolutionGraph. Both the goals are wed-
ded to the definition of relevance measure that decides what
CrowdMGR intends to show to a user. In this study, our
goal is to not advocate one particular measure over another.
Rather, we focus on defining the problem framework and
demonstrate the utility of our system for managing and in-
terpreting crowdsourced data. Online sites today usually
sort user reviews, answers, etc. by decreasing order of pop-
ularity (i.e., how many people found the review useful), re-
cency in activity, etc. Ghose et.al [2] has designed review
ranking strategies that orders reviews based on their ex-
pected helpfulness and expected effect on sale. In this work,
we transform each solution to a multi-dimensional weighted
feature vector of keywords and employ K Means Cluster-
ing that associates similar feature vectors and dissociates
dissimilar vectors, where the extent of association (or, dis-
sociation) is measured by the Euclidean distance between
the vectors. Several online sites employ natural language
processing techniques and machine learning approaches to
identify and return list of content related to user query.
In this work, we represent each problem as a boolean vec-
tor of keywords and employ Jaccard similarity coefficient to
identify the related problems. We use force-directed graph
drawing algorithm to visualize the graph. Interactive visual
analysis of the SolutionGraph to cater to a user’s cogni-
tive needs and aid further explorations possess additional
challenges. We use parallel-coordinate plots to visually cap-
ture and present the topical diversity among similar answers
and a 3D point-based plot enhanced by novel visual cues to
visually highlight the temporal trend of topics in the Solu-

tionGraph. Note that, CrowdMGR is a real-time system
and hence the task of building the SolutionGraph for a
user query incurs computational challenges too.
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Figure 2: CrowdMGR Data Model

2. CrowdMGR DESIGN
The focus of our work is to provide a framework for or-

ganizing crowdsourced data in order to help a user access
relevant content effectively and efficiently. We first intro-
duce our data model, then discuss our mining problem and
algorithmic solution, and finally present our analytics and
interactivity features.

2.1 Data Model
A crowdsourcing site, as shown in Figure 2, contains het-

erogeneous information and can be modeled as a directed
tri-partite graph G :

• Nodes: Users (U), Problems (P), and Solutions (S) co-
exist in the graph. Note that, there are two kinds of
users: Problem giver (UP) and Solution giver (US).

• Inter-relational edges: Edges between user nodes, prob-
lem nodes and solution nodes can be derived from the
explicit interactions in the crowdsourced data. For a
user u ∈ U, there exists an edge from u to a problem
p ∈ P or to a solution s ∈ S, depending on u ∈ UP or
u ∈ US. There also exists an edge from a node p ∈ P to
a node s ∈ S if s is a solution for the problem p.

• Intra-relational edges: The set of nodes in the partite
P share edges based on content similarities. The set
of nodes in the partite U share edges based on social
network ties, demographic profile information overlap,
etc. The set of nodes in the partite S share edges based
on semantic relatedness.

• Node weight: User nodes are weighted by their qualifi-
cation score, problem and solution nodes are weighted
by the aggregated count of votes (up, down) they have
received. Instead of scalars, the weights can be vectors,
e.g., weighted vector of relevance score of keywords in
the solution nodes.

For example in Figure 2, U= {u1, u2, u3, u4, u5} where u1, u2 ∈
UP and u3, u4, u5 ∈ US; P= {p1, p2, p3, p4}; S= {s1, s2, s3, s4, s5,
s6}. s1, s2, s3 are solutions to user u1’s problem p1 provided
by users u2, u3, u4 respectively.

2.2 Problem Overview
Given crowdsourced data as a tripartite graph G, a user

ui (ui ∈ UP, UP ⊆ U) and her query pj (pj ∈ P), CrowdMGR

identifies the subgraph G′ from G that contains :

• Set P′ of kp nodes (P′ ⊆ P) related to pj by measure A

• Set S′ of ks nodes (S′ ⊆ S) having directed edges from
{pj ∪ P′} and aggregated by measure B

• Set U′ of nodes (U′ ⊆ U, ui ∈ UP, U
′ − ui ⊆ US) having

directed edges from {pj ∪ P′}

The subgraph G′ is the SolutionGraph for the query. It
can also be classified as a semantic graph [1] consisting of
heterogeneous nodes and links that carry semantic informa-
tion in them.

Measure A: The objective of measure A is to select the
top-kp of neighboring problems in P that are related to user
query pj . In our system, we consider the popular Jaccard
similarity coefficient. We use the keyword extraction toolkit
Alchemy API5 to extract keywords from the problems in P.
Thus, each problem is represented as a boolean vector of size
np, where np is the the total number of distinct keywords
extracted from P. The Jaccard measure help us determine
the top-kp related problem nodes. Thus, we only leverage
the intra-relational edge information between the problem
nodes. We may employ the intra-relational edge information
in all three partites for this purpose, e.g., people who viewed
this restaurant also viewed feature in Yelp.

Measure B: The objective of measure B is to determine
the ks solution nodes in S that are to presented in G′ as
solution nodes to user query pj . If the number of solutions
for a problem is not large (≤ ns, G

′ may just comprise of
the solution nodes. However, the number of answers per
question is usually large, and answers often receive multiple
comments, e.g., in Stack Overflow. Hence, we aggregate the
set of all solutions for a problem to determine ks nodes. In
this work, we consider Euclidean distance and employ K
Means clustering to group similar vectors together.

2.3 Visualization
Our system presents the analytics report of the crowd-

sourced data in a visually engaging way :

SolutionGraph: The graph is presented as a node-link
style visualization. It is generated using Kamada-Kawai lay-
out algorithm [4]. As discussed in Section 2, there are three
types of entities in the graph: user nodes, problem nodes,
and solution nodes. Since this is a semantic graph, we use
different colors and shapes for representing the different en-
tities and links. Some design choices regarding encoding
information in the graph have been made very carefully to
facilitate analytics (to be explained in Section 2.4). The
visualization of SolutionGraph delivers information on de-
mand to avoid clutter. Before generating the graph, the
user can control its size by tuning two parameters: maxi-
mum number of related problems and maximum number of
solutions for each problem. However, it is also possible to
generate a content-rich graph and then control the amount
of information to show by applying filters on graph based on
node type, degree, popularity and so on. For example, the
user may want to see only the highly voted answers for each
problem for further analysis. The graph view is associated
with two other linked visualizations.

Topical Analysis: The solution nodes are the key entities
of interest in the graph. They contain weighted vector of rel-
evance score of keywords extracted from the solutions and

5http://http://www.alchemyapi.com/api/keyword-
extraction/
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broadly summarizes the content in the nodes. Recall that
each solution node in the SolutionGraph is an aggregated
group of similar answers in the crowdsourced data obtained
by K Means clustering. The individual answers belonging
to a solution node, though similar, are not identical. To
help the user access answer(s) based on keywords, we em-
ploy parallel coordinates (PC) plot - a technique known for
visualizing high dimensional data - as shown in as shown in
Figure 1-(i). Each vertical axis in the PC plot denotes a
keyword. The relevance is denoted as a point on the axis.
Hence, a feature vector of keywords is represented by a line
connecting the points on each axis. PC plot can effectively
highlight how similar two answers are even when they belong
to the same solution node. To accommodate large number
of axes (keywords), we use zoomable PC plot which focuses
on a few keywords at a time.

Temporal Analysis: In crowdsourcing sites, the answers
to a question are usually posted and voted over a long pe-
riod of time. A topically relevant answer may actually have
lost relevance over time. For example, if the restaurant in
Figure 1 was being praised for ‘Good Sushi’ 3 years back
but could not maintain its reputation, a temporal analysis
of the keyword ‘Good Sushi’ should reflect that. To capture
these temporal characteristics, we present all the individual
answers aggregated in a solution node on a 2D scatterplot
enhanced with visual cues, as shown in Figure 1-(ii). The an-
swers are temporally ordered along the horizontal axis, the
y-axis captures the popularity of each answer (number of up-
votes - number of downvotes). A selectable list of keywords
(a subset containing the frequent ones) is presented along-
side the plot. As the user selects a keyword, a spline curve
connects the answers that contains that keyword. This over-
laid curve on top of the scatterplot clearly highlights many
facts, e.g., if that keyword has appeared consistently over
time, if there is a correlation between the popularity of an
answer and existence of that keyword, etc.

2.4 Interaction and Analytics
CrowdMGR allows a user to perform analytics by easy

and effective interaction with the system in order to help
her seamlessly navigate from the high-level overview to the
desired levels of granularity. Our system favors analytics in
two ways :

By driving user interaction: Each of the three visual-
izations in Section 2.3 above has information encoded in such
a way that it can channel the user’s attention to the mean-
ingful components of the SolutionGraph. For example,
the sizes of the user nodes in the graph are determined by
the user’s reputation (measured by how much the commu-
nity trusts the user, how actively the user participates, etc.)
in the crowdsourcing site. Hence, while looking at the cre-
ator of a post (problem node or a solution node), the demo
participant can get some idea about the creator’s credibility
which may help her choose or skip a node. Again, the size
of a solution node is proportional to the number of individ-
ual answers it is aggregating, thereby conveying the solution
highlights and content distribution to the user effortlessly.

By responding to user interaction: As the user views
the visual analytics result returned by our system, she is
presented with opportunities to drive the analytic process
forward. For example, as the user clicks on a solution node
on the SolutionGraph, the topical and temporal analysis

plots are populated for further analysis. Again, clicking on a
curve in the topical analysis plot brings out the actual text of
the answer with keyword highlighted. Thus, our interaction
framework enables a user to navigate through various levels
of detail, otherwise unmanageable. At any point of time, the
user can restart the analysis, or step back without having to
click through a series of browser back buttons, or having to
scroll a long way up.

3. DEMONSTRATION
The CrowdMGR system can work on any crowdsourcing

site that provides data as descried in Section 2.1. For the
purpose of the demo, we use publicly available Stack Over-
flow and Stack Exchange data6. As of August 2012, the
Stack Exchange dump for Computer Science has 10,529 reg-
istered users; 4,926 questions of which 2,487 have accepted
answers; 7,122 answers; 25,042 comments; and 60,035 votes.
The Stack Exchange dump for Programmers has 96,744 reg-
istered users; 29,025 questions of which 17,451 have accepted
answers; 116,491 answers; 282,421 comments; and 1,391,975
votes. The Stack Overflow dump is even bigger having over
1.3 million registered users and over 4 million questions.

3.1 Demo
Our demo allows the audience to use a standalone appli-

cation as shown in Figure 3 and specify search query in the
scope of the crowdsourcing site under consideration. Ex-
ample queries include: Why is quicksort better than other

sorting algorithms in practice?, What are the text editors for

large files?, and so on. If the query entered by the user is
not present in the crowdsourcing site, we identify the ques-
tion that is most similar to the user query and proceed with
it. The audience can specify other query settings such as:
maximum number of solution nodes(i.e., ks) and maximum
number of related problems (i.e., kp) they want to see in
the SolutionGraph. They can select any one of the solu-
tion nodes and observe the topical and temporal trends of
the keywords in it. They can drill down deeper to view the
actual textual solution too. Such exploration will give the
audience a deeper appreciation of our systemŠs utility to
aid users extract the valuable knowledge from crowdsourced
data quickly, and it’s superiority over content displayed in
existing crowdsourcing sites.

3.2 Use Case Study
Let us illustrate our demo with a detailed use case study.

Suppose, a user selects the crowdsourcing site http://cs.

stackexchange.com/ and submits the query Why is quick-

sort better than other sorting algorithms in practice?. The
maximum number of solution nodes and the maximum num-
ber of related problem nodes she submits as input are 2 and
3 respectively. On clicking Find Answer button, The So-

lutionGraph is generated in the Visualization panel. The
problem nodes are in orange (with the user query node hav-
ing a red border); the solution nodes are in green; and the
user nodes are in blue. The size of the user node is propor-
tional to the user’s reputation score in the site. The size of
the solution node is proportional to the number of individ-
ual answers aggregated in it. Note that in the Solution

Graph, there exists a user (the node having a red border)
who has submitted answer to the user query as well as to

6http://http://stackexchange.com/
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Figure 3: User Interface of CrowdMGR

a related problem, Why is Selection Sort faster than Bubble

Sort?. Suppose, the user wants to explore the most popular
solution node for the query that have 8 answers aggregated,
i.e, the solution node mentioning ‘Memory’, ‘Linear Scan
and Partition’, and ‘Cache Friendly’. On clicking that node,
the Topical Analytics and Temporal Analytics plots are dis-
played. On selecting one of the green curves in the Topical
Analytics plot, the text of the actual answer is shown in the
Text Based View of the Answer panel (bottom left). Also,
the user can select a keyword from the drop down option
in Temporal Analytics panel to observe the popularity of a
keyword, overlaid on top of the popularity of all solutions
over time.

4. CONCLUSION
Given a user query, i.e., a problem, CrowdMGR gener-

ates a SolutionGraph that helps user manage and inter-
pret crowdsourced data and extract valuable nuggets, i.e.,
solutions, from it. It enables a user to conduct temporal and
topical analysis of the solutions returned for the problem by
the system, as well as discover answers to questions which
she did not even an ask. Our demo allows users to gener-
ate and interactively explore interesting SolutionGraph-s
for questions in Stack Overflow and Computer Science Stack
Exchange.

Our work is a preliminary look at a very novel problem
of research in crowdsourcing and there appear to be many
exciting directions of future research. Our immediate goal
is to improve the efficiency and effectiveness of our system
by employing sophisticated techniques in order to conduct
big data analytics and identify nodes to be displayed in the

SolutionGraph. Since user-generated content is always
on the rise, we plan to handle updates and insertions of new

users, problems, and answers in our system. We also intend
to investigate the applicability of our framework to other
forms of crowdsourced data involving images and videos, as
well as other novel applications, e.g., how SolutionGraph

can improve the quality of recommendation, etc.
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ABSTRACT
The generic framework for formalising the subjective inter-
estingness of patterns presented in [2] has already been ap-
plied to a number of data mining problems, including item-
set (tile) mining [3, 8, 9], multi-relational pattern mining [18,
19, 20], clustering [10], and bi-clustering [12, 11]. Also, it has
been pointed out without providing detail that also Princi-
pal Component Analysis (PCA) [7] can be derived from this
framework [2]. This short note describes work-in-progress
aiming to show in greater detail how this can be done. It
also shows how the framework leads to a robust variant of
PCA when used to formalise the subjective interestingness
of a data projection for a user who expects outliers to be
present in the data.

Categories and Subject Descriptors
H.4 [Information systems applications]: Data mining

General Terms
Theory, Algorithms

Keywords
Principal Component Analysis, Robust PCA, subjective in-
terestingness

1. INTRODUCTION
This short note gives two examples of how the framework

from [2], can be used to formalise the subjective interesting-
ness of a linear projection of a data set. Thus it illustrates
how the framework can lead to different approaches for lin-
ear dimensionality reduction depending on the prior beliefs
of the user, illustrating the importance of this initial inter-
action with the user.

We consider two types of prior beliefs in particular. The
first one of these leads to an algorithm identical to Princi-
pal Component Analysis (PCA). The second one, which is
suited for users who feel they have no accurate belief about
the spread of the data but only about the order of magni-
tude of that spread, can be thought of as a robust (outlier
insensitive) alternative to PCA that appears to be novel.

This note sweeps all details under the carpet, and leaves
a number of important questions unanswered. These details
and questions will be resolved in a later publication. The
hope is that this short note further demonstrates the use-
fulness of the framework from [2] across the breadth of ex-

ploratory data mining research. It helps in elucidating when
a certain pattern is interesting to a given user, depending on
the beliefs of that user.

In this particular study, it shows that PCA is not the best
approach for users who anticipate the presence of outliers.
While this will come as no surprise to many, this is a formal
and rigorous demonstration of why that is the case, and
additionally offers an alternative method that is appropriate
when outliers are expected by a user.

2. SUBJECTIVE INTERESTINGNESS IN A
NUTSHELL

2.1 Notation
Scalars are denoted with standard face, vectors with bold

face lower case, and matrices with bold face upper case let-
ters. The i’th data point is denoted as xi ∈ Rd with d the
dimensionality of the data space. The matrix containing
all data points transposed x′i (i = 1, . . . , n) as its rows is
denoted as X ∈ Rn×d.

2.2 Projection patterns
In the general framework of [2], we formalised patterns as

any property the data satisfies. In this paper, the particular
kind of pattern considered can formalised as a constraint on
the data of the form:

Xw = p,

where w ∈ Rd, referred to as a weight vector (also known as
the loadings), has unit norm and parameterises the pattern.
The vector p ∈ Rn specifies the value of the projections of
the data points onto the weight vector w. The fact that the
projections of all data points onto a given weight vector w
are equal to specific values is clearly a property a data set
may or may not have, and revealing it to a user provides
clear information to that user restricting the set of possible
values the data set can have.

Although ideally any possible w ∈ Rd can be considered,
in practice only a finite though large number of them can
be considered due to the lack of finite code for the set of
real numbers. Similarly, the values of p cannot be specified
to an infinite accuracy. This short note brushes over these
issues, which can be dealt with rigorously by assuming they
are specified up to a certain accuracy. A rigorous treatment
of these issues is deferred to a later publication.
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2.3 The subjective interestingness of projec-
tion patterns

In [2], the interestingness of a pattern (defined generically
as any constraint on the value of the data) is formalised as
the trade-off between the description length of the pattern,
and its subjective information content. More specifically,
the subjective interestingness of a pattern is formalised as
its subjective information content divided by its description
length. Here we very briefly summarize this framework, and
start outlining how it can be applied to the kind of patterns
of interest in this paper, namely projection patterns.

It is reasonable to consider the description length as con-
stant, independent of w and p. Indeed, this amounts to as-
suming that each possible w requires the same description
length, and that p is shown with constant absolute precision.
The latter is the case when e.g. the projections are visual-
ized on a computer screen or printed on paper. If the values
of p are normalised before visualizing, then the description
length is not exactly constant as also the normalising factor
needs to be specified, which requires a variable length code
if the normalisation factor is unbounded. However, in prac-
tice this should always account for a very small part of the
description length of the pattern.

The subjective information content is minus the logarithm
of the probability that the pattern is present, where the
probability is computed with respect to the so-called back-
ground distribution, which represents the belief state of the
user about the data.

The belief state can be modelled assuming a certain set of
prior beliefs (expressed as constraints on the expected val-
ues of certain test statistics given the background distribu-
tion). Among all distributions satisfying these constraints,
the background distribution is the one with maximum en-
tropy.

Each time a pattern is revealed to the user, the user’s
background distribution changes. More specifically, it is con-
ditioned on the presence of the pattern just revealed.

3. INTERESTING PROJECTIONS WHEN NO
OUTLIERS ARE EXPECTED

3.1 Prior beliefs and the background distribu-
tion

A user not expecting any outliers will be able to express
an expectation about the value of the average two-norm
squared of the data points:

EX∼P

{
1

n

n∑
i

x′ixi

}
= σ2.

To determine the value for σ user involvement appears to
be inevitable at first sight. However, below it will become
clear that the ordering of projection patterns according to
interestingness is in fact independent of the value of σ, so in
practice the exact value will not need to be known.

It is well known (and easy to derive) that the distribution
of maximum entropy given this prior belief constraint on the
scatter matrix of the data points is a product distribution
of multi-variate normal distributions with mean 0 and co-
variance matrix σI. I.e. the density function for each of the

data points x is:

p(x) =
1
√

2π
d

exp

(
−x′x

2σ2

)
.

Thus, the product of n such distributions, one for each of
the data points, is the background distribution formalising
a user’s prior belief state about the data set, when that user
does not anticipate the presence of outliers.

3.2 The subjective interestingness of a projec-
tion pattern

It is well-known that the probability distribution of an
orthogonal transformation of a normal random variable is
again a normal random variable, with the same mean and
with a covariance matrix that is transformed accordingly.
In the current context, with W an orthogonal matrix (i.e.
W′W = WW′ = I), and with z = W′x, it holds that:

p(z) =
1
√

2π
d

exp

(
− z′z

2σ2

)
,

=

d∏
k=1

1√
2π

exp

(
− z2k

2σ2

)
.

I.e., the distribution of z is a product distribution with a
factor for each of the components of z. Thus, the marginal
distribution for the first component, z1, is given by:

p(z1) =
1√
2π

exp

(
− z21

2σ2

)
.

Referring to the first column of W as w (and note that
w′w = 1 follows from W′W = I), this means that the
projections Xw = p of all data points follow this normal
distribution, and thus the subjective information content of
a projection pattern specified by this equality is equal to:

SubjectiveInformationContent (Xw = p)

= − log (p(Xw = p)) ,

=
n

2
log(2π) +

1

2σ2
w′X′Xw.

As the descriptional complexity is constant, this is propor-
tional to the subjective interestingness.

3.3 The maximiser of the interestingness is the
maximiser of the variance

PCA’s goal is to maximise w′X′X′w subject to the con-
straint w′w = 1, which is clearly equivalent with maximising
this subjective interestingness. PCA can thus be regarded
as finding the projection pattern with maximal subjective
interestingness for the user not expecting any outliers.

3.4 Subsequent iterations
After revealing the first projection pattern, the background

distribution is conditioned on the fact that Xw = p. The
updated background distribution is then a product distri-
bution of multivariate standard normal distributions on the
subspace orthogonal to w. The result of that is that the
subjective information of patterns in subsequent iterations
is computed as for the first pattern after deflating the data:
considering only the component of the data points orthogo-
nal to w. This is precisely the way PCA works.
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4. INTERESTING PROJECTIONS WHEN OUT-
LIERS ARE EXPECTED

With a slightly different prior belief that assumes the pres-
ence of outliers (leading to a heavy-tailed background distri-
bution), a method that can be thought of as a robust version
of PCA is obtained.

4.1 Prior beliefs and the background distribu-
tion

As prior beliefs, now the following is used:

EX∼P

{
1

n

n∑
i

log

(
1 +

1

ρ
x′ixi

)}
= c.

This kind of prior belief specifies an expectation on a mea-
sure of the spread of the data, which amplifies contributions
from points with small norm relative to the data points with
large norm through a log transformation. Thus, using such
a prior belief rather than say a prior belief on the second mo-
ment considers outliers in the data relatively more probable.
The smaller the value of ρ, the less important the constant
term in the argument of the logarithm will be, the more log-
arithmic this statistic will therefore vary with the norm of
xi, and thus the more tolerant this model will be to outliers.
Informally: rather than determining an expectation on the
spread of the data, for small values of ρ it determines an
expectation on the order of magnitude of the spread of the
data.

For convenience in the following derivations, let us intro-
duce the function

κ(ν) = ψ

(
ν + d

2

)
− ψ

(ν
2

)
,

where ψ represents the digamma function. In the sequel
the value of κ−1(c) will need to be used, denoted as ν for
brevity. Then, the initial background distribution can be de-
rived by relying on [22], where it is shown that the maximum
entropy distribution subject to the specified prior informa-
tion is the product of independent multivariate standard t-
distributions with density function p defined as:

p(x) =
Γ
(
ν+d
2

)√
(πρ)dΓ

(
ν
2

) · 1(
1 + 1

ρ
x′x
) ν+d

2

,

with one factor in this product distribution for each data
point. Here Γ represents the gamma function.

Note that for ρ, ν → ∞, ρ
ν
→ σ2 this tends to the mul-

tivariate normal distribution with mean 0 and covariance
matrix σ2I. For ρ = ν = 1 this is a multivariate standard
Cauchy distribution, which is so heavy-tailed that its mean
is undefined and its second moment is infinitely large. Thus,
this type of prior beliefs can clearly model the expectation
of outliers to varying degrees.

4.2 The subjective interestingness of a projec-
tion pattern

To compute the subjective information content, note that
the density function for the transformed variable z = W′x
with W an orthogonal matrix is given as:

p(z) =
Γ
(
ν+d
2

)√
(πρ)dΓ

(
ν
2

) · 1(
1 + 1

ρ
z′z
) ν+d

2

.

Now, the density function for the marginal distribution of
a t-distribution with given covariance matrix is again a t-
distribution density with the same number of degrees of free-
dom, obtained by simply selecting the relevant part of the
covariance matrix [13, 15]. With w denoting the first column
of W, this means that the density function for z1 = w′x,
the first component of z, is:

p(z1) =
Γ
(
ν+1
2

)
√
πρΓ

(
ν
2

) · 1(
1 + 1

ρ
z21

) ν+1
2

.

Written in terms of x, this is:

p(x′w) =
Γ
(
ν+1
2

)
√
πρΓ

(
ν
2

) · 1(
1 + 1

ρ
w′xx′w

) ν+1
2

.

Thus, the subjective information content of a pattern stating
that Xw = p is:

SubjectiveInformationContent (Xw = p)

=
ν + 1

2

n∑
i=1

log

(
1 +

1

ρ
(x′iw)2

)
+ a constant.

Again, as the description length is constant, this is propor-
tional to the subjective interestingness.

4.3 Maximising the interestingness using a ro-
bust version of PCA

Taking into account that w′w = 1 (as required in the pat-
terns considered and as imposed by the orthogonality of W),
maximising the subjective interestingness is thus equivalent
to solving the following problem:

maxw

n∑
i=1

log
(
ρ+ (x′iw)2

)
,

s.t. w′w = 1.

The method of Lagrange multipliers leads to the following
optimality condition for the subjective information content:(

n∑
i=1

xix
′
i

ρ+ (x′iw)2

)
w = λw.

Note that the matrix on the left hand side is propotional
to essentially a weighted empirical covariance matrix for the
data, where points contribute more if they have a smaller
value for (x′iw)2: the weight for xix

′
i is 1

ρ+(x′iw)2
.

Although this optimisation problem is not convex and the
optimality conditions do not admit a closed form solution
in terms of e.g. an eigenvalue problem, a modified version
of the power method for solving eigenvalue problems empir-
ically appears to be a good heuristic approach. The algo-
rithm goes as follows:

1. Solve the eigenvalue problem
(∑n

i=1 xix
′
i

)
w = λw for

the dominant eigenvector,1 further denoted w(0). This
vector is normalised to unit norm.

1This amounts to solving the problem for ρ → ∞, which
is essentially equivalent to PCA. This is no coincidence as
for ρ, ν → ∞, ρ

ν
→ σ2 the background distribution is an

isotropic multivariate Gaussian distribution, as noted above.
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2. Iterate from k = 1 until convergence or maximum
number of iterations reached:

(a) v(k) =
(∑n

i=1

xix
′
i

ρ+(x′iw
(k−1))2

)
w(k−1).

(b) w(k) = v(k)

‖v(k)‖ .

Clearly this is not guaranteed to converge to the global op-
timum, but in practice it appears to perform well. Whether
it always converges to a local optimum is left as an open
question in this note.

The effect of the parameter ρ is as follows. For a smaller
value of ρ, the tail of the background distribution can be
heavier, as then the nonlinearity of the logarithm in the prior
belief constraint will affect data points of smaller magnitude.
The effect of this is that outliers (for which (x′iw)2 may be
very large) will not weigh in as strongly as they would in
PCA, as the contribution of xix

′
i to what can be thought of

as a reweighted covariance matrix is reduced, and relatively
more so than for data points for which (x′iw)2 is small as
compared to ρ (for which the reduction is roughly constant).
Informally speaking, ρ is a soft threshold on the squared
distance along w beyond which data points will no longer
be able to bias the solution in their own direction.

Interestingly, just like in PCA where the value of σ has no
effect on which pattern is most interesting, here the value of
ν and thus of c has no effect on which projection is the most
interesting one. (Though σ and c do affect the value of the
interestingness in both cases.) This significantly reduces the
demands on the user in specifying their prior beliefs.

4.4 Subsequent iterations
A property of the multivariate t-distribution is that the

conditional distribution conditioned on the value of any of
the dimensions is again a multivariate t-distribution, though
with a different number of degrees of freedom and a differ-
ent covariance matrix [15]. Thus, after revealing the values
of the projections p, the updated background distribution
is again a multivariate t-distribution for the parts of the
data points orthogonal to w from the first pattern. The
next pattern can be found essentially by projecting the data
points onto the orthogonal complement of w and repeating
the same procedure.

5. EXPERIMENT
To illustrate the robustness of the PCA alternative derived

in the previous section, consider a dataset consisting of 1000
data points sampled from a Gaussian distribution with mean

0 and with covariance matrix

(
4 0
0 1

)
, to which a further

100 ‘outliers’ are added, sampled from a Gaussian distribu-

tion with mean 0 and with covariance matrix

(
16 12
12 13

)
.

The weight vector resulting from standard PCA is shown
with a full red line in Fig. 1. The black dash-dotted lines
show the weight vectors retrieved by the robust PCA method
described, with values for ρ equal to 1, 10, and 100. The
largest value of these resulted in the line closest to the PCA
result. The green dashed line shows the weight vector that
would have been found using standard PCA had there been
no outliers at all (i.e. computed just on the first 1000 data
points).

The left figure shows the resulting weight vectors on top
of a scatter plot of all data points, clearly showing that the

PCA result is determined primarily by the outliers. The
right figure shows the same resulting weight vectors on top
of a scatter plot of only the first 1000 data points (excluding
the outliers). Clearly, the robust PCA version is much less
strongly affected by the outliers and primarily determined
by the dominant variance direction in the bulk of the data
points excluding the outliers.

6. DISCUSSION AND FURTHER WORK
This note shows how PCA can be derived as an instanti-

ation of the framework from [2] for deriving subjective in-
terestingness of exploratory data mining patterns. Addi-
tionally, it shows how prior beliefs reflecting the expectation
that outliers may be present in the data lead to an alterna-
tive to PCA that is less sensitive to such outliers.

Robust PCA is an important research topic that has been
studied for decades, see e.g. [1, 14, 6, 21] for a few recent
references. Often the problem is tackled as an instance of
projection pursuit (and also our algorithm could be viewed
as such) [4, 5], by making use of a robust estimator of the
covariance matrix [17, 16], or by making additional assump-
tions about the nature of the interesting aspects of the data
and the corrupting noise process. The algorithm derived in
this note appears to be most strongly related to the algo-
rithm from [14], but further study into connections between
the two is required.

In further work we will enhance the rigour of the deriva-
tions, attempt to establish the convergence of the algorithm
for the robust version of PCA, and investigate the utility of
other alternatives to PCA that are useful for other relevant
kinds of prior belief states. E.g. it is relatively straightfor-
ward to add assumptions on anisotropy of the data to the
prior beliefs in both the derivation of PCA and of the robust
version of PCA, as well as assumptions about the expected
average of the data points not being the origin. However
also altogether different kinds of prior beliefs could be of
interest.
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ABSTRACT 
Interactive analytics provide users a myriad of computational 
means to aid in extracting meaningful information from large and 
complex datasets. Much prior work focuses either on advancing 
the capabilities of machine-centric approaches by the data mining 
and machine learning communities, or human-driven methods by 
the visualization and CHI communities. However, these methods 
do not yet support a true human-machine symbiotic relationship 
where users and machines work together collaboratively and adapt 
to each other to advance an interactive analytic process. In this 
paper we discuss some of the inherent issues, outlining what we 
believe are the steps toward usable interactive analytics that will 
ultimately increase the effectiveness for both humans and 
computers to produce insights.   

1. INTRODUCTION 
To tackle the onset of big data, visual analytics seeks to marry the 
human-intuition of visualization with the analytical horsepower of 
mathematical models. Yet, a critical open question is how humans 
will interact with, steer, and train these complex mathematical 
models. 

The visual analytics community has worked to provide visual 
representations of data, as approximated by complex models and 
analytics [34]. User interaction is critical to the success of such 
visual data exploration, as it allows users to engage in a process of 
testing assertions, assumptions, and hypotheses about the 
information given one’s prior knowledge about the world. This 
cognitive process can be generally referred to as sensemaking. 
Visual analytics emphasizes sensemaking of large, complex 
datasets through interactively exploring visualizations generated 
via a combination of analytic models. Thus, a central focus is 
understanding how to leverage human cognition in concert with 
powerful computation through usable visual metaphors. 

Initially, the principles of direct manipulation were applied to 
such models in a simplistic fashion by using control panels to 
directly manipulate model parameters. Direct manipulation 
specifies the following three properties for interaction design for 
information visualization: (1) continuous representation of the 
object of interest, (2) physical actions or labeled button presses 
instead of complex syntax, and (3) rapid incremental reversible 
operations whose impact on the object of interest is immediately 
visible [31]. Typically, these principles are applied in the form of 
a control panel, containing visual widgets such as sliders, buttons, 
or query fields, coupled to the parameters of a visual 
representation in the main view. For the purpose of interactive 
machine learning, these interfaces provide feedback in an 
expressive and formal way (e.g., standard training and labeling 
tasks).  

However, for users and their analytic tasks, these interactions may 
present significant usability issues by forcing the user out of their 
cognitive flow or zone [11,22], and may place fundamental 
limitations on sensemaking activity due to lack of recognition of 
the depth of interactions which humans apply in their cognitive 
processes.  Exploiting humans merely as data labelers or 
parameter tuners mis-uses human expertise and skills, forcing 
humans to adapt to formal algorithmic methods and apriori 
parameter specifications, when their strengths are in incremental 
informal reasoning. More importantly, it misses a major 
opportunity for the potential benefits of coupling cognition and 
computation. 

We contend that a new methodology to couple the cognitive and 
computational components of such systems is needed. We suggest 
Semantic Interaction as a potential solution concept, which 
attempts to bridge these components by binding the user 
interactions used for visual sensemaking with the training of 
machine learning techniques [17]. Semantic interaction interfaces 
produce this coupling by leveraging the visual metaphor as the 
mapping function, and the visual encoding as the interactive 
affordance by which users perform their visual data exploration. 
In this paper we discuss the concept of semantic interaction as a 
method for systematically learning characteristics about a user and 
his or her reasoning process, adapting the underlying analytic 
model, and increasing the usability of incorporating the human in 
the loop.  

2. SEMANTIC INTERACTION  
Semantic interaction is an approach to user interaction for visual 
analytics in which the user’s analytical reasoning is inferred and 
in turn used to steer the underlying models implicitly. The goal of 
this approach is to enable co-reasoning between the human and 
the analytic models (coupling cognition and computation) without 
requiring the user to directly control the models and parameters. 
This co-reasoning occurs through mutual interaction with a visual 
medium of communication – the visualization or visual metaphor. 

The approach of semantic interaction is to overload the metaphor 
through which the insights are obtained (i.e., the visualization of 
information created by computational models) and the interaction 
metaphor through which hypotheses and assertions are 
communicated (i.e., interaction occurs within the visual 
metaphor). Semantic interaction enables users to directly 
manipulate data within visualizations, from which tacit knowledge 
about the user is captured, and the underlying analytic models are 
steered. The analytic models can be incrementally adapted based 
on the user’s incremental sensemaking process and domain 
expertise explicated via the user interactions with the system. The 
specifics of the system could include multiple visual metaphors 
used in concert.  
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That is, the parameters of the underlying analytic models are 
exposed through the visual constructs of the visualization. Based 
on common visual metaphors (such as the geographic, spatial 
metaphor where proximity approximates similarity), tacit 
knowledge of the user’s reasoning can be inferred through 
inverting these analytic models. As a result, users are shielded 
from the underlying complexities, and able to interact with their 
data through a bi-directional visual medium. The interactions 
users perform within the visualizations to augment the visual 
encodings within the metaphor enable the inference of their 
analytic reasoning, which are systematically applied to the 
underlying models. The visual metaphor helps define the mapping 
between the model parameters and the visualization, and the 
visual encoding provides the visual interactive affordance by 
which users can interact. Thus, the process of visual data 
exploration and models steering occur on the same set and 
sequence of interactions. 

The semantic interaction pipeline (shown in Figure 1) takes an 
approach of directly binding model steering techniques to the 
interactive affordances created by the visualization. For example, 
a distance function used to determine the relative similarity 
between two data points (visually depicted as distance in a spatial 
layout), can serve as the interactive affordance to allow users to 
explore that relationship. Therefore, the user interaction is directly 
in the visual metaphor, creating a bi-directional medium between 
the user and the analytic models. This method of user interaction 
is also similar to the “by example” method of interaction, as users 
can directly show their intention using the structure of the 
visualization. This adds to the role of visualization in the 
reasoning process, in that it is no longer intended to be solely a 
method for gaining insight, but also one for directly interacting 
with the information and the system. The bi-directionality 
afforded by semantic interaction comes via binding the parameter 
controls traditionally afforded by the GUI directly within the 
visual metaphor. It is through this binding that an inference can be 
made about the user’s analytic reasoning from the user interaction 
with the visualization with regards to the parameters of the 
underlying mathematical model.  

For example, a spatial layout is one specific visual metaphor 
where existing research on semantic interaction has been 
conducted, described in [14,15,16]. The spatial visual metaphor 
(i.e., a spatialization) is one where the bi-directionality afforded 
by semantic interaction has been demonstrated. A spatial 
metaphor lends itself well to common dimension reduction 
models to reduce the dimensionality of complex data to two 
dimensions. For example, relationships and similarities between 
high-dimensional data objects can be shown in two dimensions by 
leveraging dimension reduction models including: principal-
component analysis, multi-dimensional scaling, force-directed 
layouts, etc. In general, these models attempt to approximate the 
distance between data objects in their true, high-dimensional 
representation using a smaller number of dimensions (e.g. two 
dimensions in the case of spatial visualization).  
Prior work has applied semantic interaction methods to this visual 
metaphor. For example, inverting multi-dimensional scaling, 
principal-component analysis, and generative topographic 
mapping can enable bi-directional spatializations to afford 
semantic interaction [4,16]. The ability to understand the 
parameters of each of the models that can be exposed through the 
visual encoding (in this case, relative distance between data 
points) enabled this affordance. Further work has explored the 
tradeoffs between the various ways to map the user feedback of 

changing the relative distance between data objects to the 
underlying dimension reduction models [24,27]. 

 
Figure 1 A generalizable model for coupling cognition and 
computation. Plans generate intents that are externalized by 
users via interactions and physical actions. Data and user 
models can be inferred from these actions, and used to update 
a visualization to continue the analytic process.  
 

3. RESEARCH AGENDA 
Based on the promising initial results of current research on 
semantic interaction for visual analytics, the sections below 
describe open areas of research to advance the field in usable 
interactive analytics. These sections describe current work in each 
topic, as well as illuminate open areas of research that can 
advance the goal of creating usable interactive analytics via 
semantic interaction. The areas of research can be depicted in a 
generalizable model for semantic interaction interfaces, shown in 
Figure 1.  

3.1 Sensing and Capturing User Interaction 
Semantic interaction interfaces are grounded in the concept of 
treating user interaction as data from which models about the user 
are created. This interaction data about the user can be captured 
from two categories of sources: virtual interactions, and physical 
actions. 

Virtual interactions refer to those that a user performs within a 
user interface. These have been previously studied for the 
purposes of understanding the user. For example, Yi et al. 
presented an extensive categorization of user interactions 
available in popular exploratory visualization tools [35]. Further, 
Dou et al. have shown that through logging user interactions in a 
visualization of financial data, low-level analytical processes can 
be reconstructed [9,26]. Most importantly, these results indicate 
that a detectable connection exists between the low-level user 
interaction and the high-level analytic processes of users when it 
comes to visual data exploration. The advancement of 
understanding how processes and knowledge from users manifest 
in user interaction forms the science of interaction [29].  
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The physical actions or attributes that humans exhibit while 
analyzing data may also provide cues from which models can be 
generated and adapted. For example, research has shown that 
navigating large information spaces using physical navigation 
with large displays is significantly advantageous over virtual 
navigation with small displays [2]. These physical actions, or 
strategies for interacting, can also be analyzed to identify 
effectiveness of analytic strategies on such displays [12]. For 
example, the sensing of office chair rotation relative to a large 
display can provide an approximation of the user’s primary focus 
of attention [13]. These, as well as other physiological measures, 
such as EEG, fNIRS, and fMRI, can increase the amount of 
information about a user that can be modeled, and ultimately re-
cast into interactions with mixed-initiative analytics systems 
[1,28,32].  

Open questions within this topic include: 

• What additional visual metaphors and user interfaces can be 
sources of user interaction data to add breadth to the science 
of interaction? 

• How can the directness of the virtual interactions (with 
respect to the interface and task) be coupled with the 
passiveness of the physical actions? What are the tradeoffs 
between the passive sensing of physical actions and the 
direct sensing of virtual interactions? 

3.2 Inferring User Models 
As visualization systems become more complex, so do the user’s 
ability to express their reasoning process through these complex 
interfaces. These reasoning processes reflect a user’s cognitive 
abilities [7] and personality traits [36], and are often influenced by 
the user’s cognitive and mental state (such as emotion and 
cognitive load) [23,28]. 

The research goal of User Modeling is to reconstruct the relevant 
profile of a user by analyzing their interactions with a complex 
visualization tool. For example, Brown et al. demonstrated that a 
user’s performance during a visual search task, as well as aspects 
of a user’s personality profile, can be inferred and predicted in 
real-time [5]. Similarly, the physical motions of a user’s mouse 
movement have been shown to be effective as biometrics to 
authentic a user’s identity for security purposes [30].   

Beyond analyzing a user’s virtual interactions (mouse and 
keyboard interactions), other user-generated data has also been 
used to infer models of a user. For example, eye-tracking data has 
been shown to reflect a user’s cognitive abilities and personality 
traits [33]. More broadly, Gou et al. developed a tool called 
System U that can automatically identify a user’s full personality 
profile by examining as little as two hundred of the user’s Twitter 
postings [21]. These user modeling techniques give rise to the 
possibility of mixed-initiative visual analytics systems in which 
the computer can understand and support the user’s analysis needs 
in real time [34]. 

Open research areas include: 

• What other forms of models can be inferred, steered, and 
created (e.g., task models, role-based models, etc.)? 

• How can we detect artifacts of cognitive processes that may 
be less desired (e.g., forms of bias, cognitive depletion, etc.)? 

3.3 Inferring Data Models 
Semantic interaction interfaces can implicitly map to, train, and 
steer underlying data models. One method to do this is to enable 
users to manipulate the output of the model, and then 
computationally invert the model to learn optimized inputs that 
would produce the desired outputs.  

For example, a data model might consist of a weighting of data 
features applied in a weighted dimensionality reduction algorithm. 
Instead of requiring users to directly manipulate the input 
weighting of features, semantic interaction enables users to 
manipulate the output visualization of the information, from 
which the weighting of features can be inferred. Prior work has 
shown how such user interactions (e.g., re-organizing data within 
a spatial layout) can map to the weighting of features, in tools 
such as OLI [4,16,27]  and Dis-Function [4].  Term weights for 
text analytcs can be learned from users interactions with spatial 
organizations of documents, highlighting, annotations, reading 
patterns, eye gaze, etc. in ForceSPIRE [14,15] and StarSpire [3]. 
iCluster demonstates learning of a document clustering model 
through users’ incremental cluster membership choices [10]. 
Apolo demonstrates learning network belief-propagation models 
through textual sensemaking interactions [6].  

Open questions include: 

• What additional data processing models can be steered or 
created?  

• How can we consider models that function on different 
scales of data (i.e., from overview to detail, but also from 
detail to meaningful context)? 

3.4 Adaptive Visualization 
Techniques for User and Data Modeling would inform the 
visualization and the analytics system’s high-level information 
about the user’s analysis goals and needs. Responding to these 
inputs, the visualization system can adapt the information and 
representation presented to the user. Similarly, the analytics 
engine can also modify its behavior to achieve more efficient and 
accurate analysis results (see Section 3.5). 

Adaptive user interfaces and visualization systems have been an 
important research topic in HCI. Interfaces such as SUPPLE have 
demonstrated that a system can learn a user’s motor disabilities 
(such as Parkinson’s) or the limitations of the device (such as 
smart phone and tablet), and automatically adapt the size and 
positioning of UI elements to generate a user interface that is 
optimal to the user and the device [20].  

In adaptive visualization, researchers have examined the 
relationship between visual metaphors and the user’s personality 
traits [23,33,36]. Moving beyond interface-level adaptations, 
systems have also adapted based on the amount of information 
presented to the user. In the context of games and training, these 
types of adaptations are often referred to as “dynamic difficulty” 
adjustments [25], but the same techniques have been more broadly 
applied to real-world scenarios such as assisting operators of 
unmanned vehicles and robots [1,8,32]. 
Open questions include: 

• How do we ensure that, in mixed-initiative systems, both the 
system and the user have equal opportunities to provide 
feedback? 
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• How do we ensure the system responds in a way that 
amplifies the cognitive processes, and aids them, instead of 
deteriorating the performance of the person? 

3.5 Adaptive Computation 
In addition to user-level adaptation, analytics algorithms and 
systems can also benefit from having knowledge about the user’s 
cognitive style and analysis processes.  

As datasets get larger, it becomes increasingly difficult for 
visualizations and analytic systems to provide both interactivity 
and complete data analysis simultaneously. The old design adage 
of “Overview First, Details on Demand” limits the size of the data 
that a visual analytics system can support at an interactive rate. 
The “Big Data” challenge requires new computational techniques 
and paradigm shifts. In the case of visual analytics, one potentially 
rich and fruitful approach is to integrate User and Data Modeling 
into novel adaptive computational techniques. 
“Approximate computing” can generate an overview of a large 
dataset in real-time. Approximate computing will, by definition, 
be less accurate than traditional statistical or machine learning 
techniques, but will deliver sufficient information for the user to 
perceive high-level patterns within the data in a fraction of the 
time. Some plausible factors for approximate computing include 
the consideration of human perception properties such as just 
noticeable difference (JND), or cognitive limitations based on 
attention, working memory capacity, or cognitive load [18]. 

In addition, “user-guided computation” that leverages knowledge 
of the user’s analysis process and goals can lead to advancements 
in efficient, online algorithms that compute only the information 
needed by the user. As the user explores the data, these algorithms 
can incrementally increase (or decrease) in detail by incorporating 
more (or less) data. Such an analytic engine can maintain a small 
memory footprint while providing the user with rich information 
throughout the user’s exploration process [19]. 
Open questions include: 

• How do we perform model selection over a set of models has 
been created, selecting the one (or combination) that is most 
appropriate given the context of the analysis? 

• What are other forms of models or computation that lend 
themselves to the semantic interaction methods outlined in 
this position statement? 

4. CONCLUSION 
Achieving effective coupling of cognition and computation for 
interactive analytics will require significant research attention 
towards usability and interaction issues. Clearly, we must go well 
beyond existing simple human-in-the-loop methods. We have 
outlined a research agenda that we believe will be critical to 
enabling insight in the big data era. 
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ABSTRACT
Exploring and analyzing a large amount of data is becom-
ing increasingly common, and human involvement in the
process is often required. The advantage of visual data min-
ing is that it combines the flexibility, creativity, and general
knowledge of a human with brute computational power. In
this paper, we describe a novel system, a visual data mining
framework, called GNoT, that supports interactive knowl-
edge discovery by interconnecting state of the art tools for
visualization, relational database management, and machine
learning. The system essentially provides the glue connect-
ing these kinds of components, and thus will be able to
“ride the wave” of improvements in each of these areas. We
demonstrate the tool’s utility with a case study on a real-
world application.

1. INTRODUCTION
Data mining is the process of extracting useful informa-

tion from large data sets. Historically, research on data min-
ing has emphasized some combination of machine learning,
statistics, and database systems. In recent years, however,
data visualization has come to play an ever more important
role as the field of visual data mining has grown. Studies
suggest visual data mining can be faster and more intuitive
than traditional data mining [9]. In this paper, we describe a
novel system, called GNoT, that combines data visualization
and data analysis tools. It supports a style of interactive dis-
covery in which a user follows the iterative process depicted
in Figure 1. This approach to data mining has been shown
to be highly effective on moderately sized data sets [9], and
we believe will become even more useful in the era of “big
data.”

GNoT is a visual data mining framework that supports
this style of interactive knowledge discovery by interconnect-
ing state of the art tools for visualization, relational database
management, and machine learning. For example, the dra-
matic increase in the size of the data that are mined brings
a renewed focus on the database management, and in our
work we attempt to benefit from the latest advancements in
database systems.

By using an existing relational database management sys-
tem (RDBMS), GNoT simplifies the process of storing, and
accessing the data. The process of filtering, projecting, and
formatting data can be done efficiently using a conventional
query language (SQL). Similarly, the visualization phase is
well-served by the incorporation of a high-level versatile vi-
sualization library [4] and its extensions, and the data ana-
lytics phase by the incorporation of several external libraries

Data 
storage 

Filtering, 
projecting, 
formatting 

data 

Data 
Analytics 

Visualizing 
results 

interactively 

Figure 1: Pipeline of visual data exploration.

well suited for this purpose. The system essentially provides
the glue connecting these kinds of components, and should
therefore be able to “ride the wave” of improvements in each
of these areas.

GNoT is written in Python (backend) and JavaScript (front-
end). It is run as a web server, and visualizations are ren-
dered in the clients’ browsers. GNoT makes use of many
JavaScript libraries that offer rich user-interactive dynamic
visualizations. GNoT supports any PostgresSQL based RDBMS
in the backend, and thus makes use of the recent develop-
ments on fast, parallel database systems based on a column
store architecture such as Greenplum1 and Vertica [10]. It
can also interface to cloud based distributed database sys-
tems such as Redshift [15]. The platform is modular, comes
with a large set of Visualization types readily available, and
new types of visualization libraries can be easily added.

GNoT enables rapid visualization and visual data min-
ing (Figure 2). With GNoT, using an existing module re-
quires neither programming nor software engineering exper-
tise, and extending a module typically involves integrating
with a JavaScript library such as D3.

1http://www.gopivotal.com/
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Figure 2: Using GNoT, we are able to quickly
explore twitter data on financial news, and try
to understand the patterns between the twitter
users and the stocks covered by them. Query
|MODULE:explore_graph TABLE:finance.twitter_feed

SOURCE:author_id TARGET:stock LIMIT:1000 FIELD:

count(*)as n ORDERBY:n desc| generates the graph.
First, we observe that a set of stocks are exclusively
covered by a set of author ids (twitter users). By
clicking on a target node (light blue) we see the
node’s name (DELL). We can also observe that
technology stocks form a cluster that is covered by
a group of twitter users who rarely cover anything
else.

We make the following contributions in this work:

• A framework that elegantly interconnects tools from
database systems, visualization tools, and machine learn-
ing libraries to offer a fluid experience in visual data
mining. Our framework is modular, scalable, extensi-
ble, and makes use of state of the art tools to perform
each of the subtasks.

• A fully functional implementation of the framework
built using a column-store database, a set of core mod-
ules offering a large subset of the D3 visualization
types, and a set of core machine learning modules. It
is available at http://github.com/garthee/gnot.

• A detailed case study illustrating how the system can
be used on a real problem. As part of this case study
we introduce a set of modules offering analytics and
visualization on geolocation data coupled with other
types of data such as time series.

In the rest of the paper, we provide direct links to the
demo pages (identified by å) whenever they are available.

The remainder of the paper is organized as follows. We
first discuss related works. We then discuss the design ratio-
nale and the design of the framework. Then we go through
a case study of using GNoT in a real-world data exploration
application. We conclude with a short discussion and sum-
mary of the system.

2. RELATED WORK
We realize that “one size doesn’t fit all”. GNoT is neither

an all-in-one framework nor is it optimized for a single spe-

cialized visualization task. Instead, it provides the glue con-
necting various specialized tools to perform rapid visualiza-
tion on relational data. This enables us to easily provide the
latest machine learning methods to the visual data mining
process while making use of the advancements in RDBMS
and visualization libraries. Whenever possible, GNoT of-
floads the underlying tasks to these specialized tools.

2.1 Languages and low-level tools
Many languages provide rich visualization capabilities [6].

For example, Matlab offers a large set of static plots and
Matplotlib offers similar capability with Python. There are
also similar tools such as Weka [8], GNU plot and ggplot
that support visualization within the framework of a lan-
guage. Because these tools are set within the framework of
a programming language, they readily offer integration with
machine learning algorithms built in those languages (e.g.,
Matlab, Weka and R).

There also exists a set of libraries specifically targeting vi-
sualization tasks including low-level graphics libraries such
as Processing2 and Raphael3 [4]. While they offer great flex-
ibility in how visualizations appear, they can be challenging
to use for complex visualization tasks. Generally the visual-
izations generated by these tools lack dynamic controls and
user interactions.

2.2 Database systems
There have been significant advancements in relational

database systems [14], e.g., column stores, distributed database
systems, and map-reduce. Systems like Greenplum and Ver-
tica are providing state of the art database techniques for re-
lational data. Amazon’s Redshift offers a distributed database
system in the cloud [15]. However, these database systems
do not offer any visualization capabilities. Further, they
provide only limited support for complex analytics.

Tools such as VQE [7], Visage [12], Tioga-2 [1], and Snap-
together[11] were among the first to provide visualization
environments that directly support interactive data explo-
ration on relational data. However they offer only basic
set of visualizations such as simple graphs, and are far be-
hind contemporary graphics libraries such as D3 in keeping
up with the latest advancements in visualization techniques.
Further, they also do not offer any support for complex ana-
lytics. Recently, graphics libraries and visualization systems
have taken their place.

2.3 Graphics Libraries
There have been many libraries developed in the last few

years targeting specific graphical functionality. Flot, icharts,
Exhibit, jQuery Visualize, Google Charts, and CartoDB are
among those that offer specific types of in-browser visualiza-
tions. D3 stands out as a highly versatile generic browser-
based visualization library [4]. It provides a close mapping
between the data and the desired result, and a greater flex-
ibility in achieving the latter. D3 also offers high-level ca-
pability by including a collection of helper modules that sit
on top of the kernel library to offer rich visualizations with
minimal effort. This capability has been further extended by
other D3 based libraries such as Crossfilter4, Rickshaw5, and

2http://www.processing.org/
3http://raphaeljs.com/
4http://square.github.io/crossfilter/
5http://code.shutterstock.com/rickshaw/
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Figure 3: Frontend UI: A query input box with autocomplete and hotkeys makes it easy for users to construct
a query specifying table, field, and other options.

NVD36. These libraries often accept the data in a delimited
file (CSV or TSV) or as a JSON file.

Although GNoT is not tied to any particular front-end
library, the current set of modules depend on D3 or its ex-
tensions for the front-end, and acts as middleman to feed the
relational data and the results of the analytics performed on
the relational data to these libraries in the format that they
expect.

2.4 Visualization Systems
There are frameworks supporting the full range of the data

mining pipeline. Ranging from IBM Many Eyes [16] to Im-
provise [17] and Polaris [13] (and its commercial implemen-
tation Tableau), they offer vertically integrated systems with
a hierarchy of visualization components, tools for analytics,
and data storage systems. Users of Improvise and Polaris
can use existing components, subclass and extend an exist-
ing components, and add new components.

GNoT takes a similar approach, but trades tight integra-
tion for efficiency and rapid deployment. With GNoT, using
an existing module requires neither programming nor soft-
ware engineering expertise, and extending a module typi-
cally involves integrating a JavaScript library such as D3.
Further, instead of providing a vertically integrated mono-
lithic solution, GNoT interconnects state of the art tools for
visualization, relational database management, and machine
learning.

Recently, cloud based solutions for visual data mining are
becoming popular, e.g., Google fusion tables, IBM’s Many
Eyes, Google Public Data Explorer, and Wolfram Alpha.
While they differ in the offerings and the richness of the set
of features, these systems typically allow the user to upload
a dataset and build a set of visualizations from the data.
However, they rarely offer any support to perform complex
analytics on the data, and are ill suited for large datasets.

3. DESIGN RATIONALE
GNoT’s primary objective is to offer rapid interactive ex-

ploration and complex analytics on large relational databases
while allowing the user to benefit from the latest develop-
ments in visualization techniques, database systems, and
machine learning methods for analytics.

To effectively support the stated objective, our framework
must meet the following demands:

6http://nvd3.org/

• Ease of use:
In order to perform the exploration rapidly and inter-
actively, analysts need to be able to create visualiza-
tions with relative ease. People working with data are
accustomed to SQL queries and tabular data. A SQL
like query with a front-end UI (Figure 3) that offers
autocomplete to guide the user with input selections
allows us to achieve this.

• Easy entry and flexibility:
It should be easy for new users to execute simple task,
while at the same time allowing the flexibility for more
advance users to integrate modules needed for more
advanced tasks. Instead of creating a new graphics
language or protocol, we simply extend the SQL syn-
tax. Also because the current set of modules make use
of D3, they simply follow D3’s protocols.

• Technology reuse:
Technology reuse reduces the foot print of the frame-
work, and allows the system to keep up to date with
minimal effort. Our framework minimizes its footprint
by bridging a RDBMS with front-end visualization li-
braries such as D3 and backend libraries such as Scikit
to perform complex analytics. By reusing an ecosys-
tem of related components, we offload a major fraction
of the subtasks to specialized tools. Thus, we are able
to keep up to date with the advancements in each of
the subtasks.

• Extensible and scalable:
In order to keep up to date, the system must be ex-
tensible. A modular approach that offloads most of
the work to external libraries makes the system eas-
ily extensible. This approach allows us to replace one
component by another to achieve greater functional-
ity or scalability. For instance, in our framework a
PostgresSQL based RDBMS is readily replaceable with
Greenplum or Redshift. Similarly, the modular ap-
proach allows us to update the modules to use a dif-
ferent machine learning library with relative ease.

• Performance:
Since the intent is to provide an interactive exploration
tool, performance is critical. Therefore the system
should have minimal overhead so that performance is
governed by the speed of the individual components
(e.g., the RDBMS or the machine learning compo-
nent).
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Figure 4: Architecture of GNoT

4. GNOT
Figure 4 shows the architecture of GNoT. The visualiza-

tions are implemented as a series of modules. The framework
exposes the functionalities of each module to the user, and
mediates interconnection among the user, the RDBMS, and
the module. In addition, the framework performs various
maintenance tasks such as caching, parsing and validating
user inputs, and mapping HTML outputs.

GNoT is a web server implemented on top of Werkzeug7,
and encompasses a query parser, database abstraction, and
an output mapper. The database abstraction executes SQL
queries generated by other modules in the system and re-
turns the result. It also caches the query output in the file
system so that queries are bypassed when the output exists
in the file system. Users can overwrite the cache by opting
for reload in the input query. The front end is a visual search
UI built on top of Visualsearch8. The UI populates the op-
tions from a list of options specified by individual modules,
and the table-field information from the database. The UI
allows the user to quickly specify the inputs.

Visualizations are implemented by individual modules.
Built-in modules cover the broad range of visualizations
available in D3, and using them is as simple as selecting
the visualization type in the query box. Figure 5 shows the
use of such a module. Note that the input options make use
of the SQL functions to format the fields.

Should users find the built-in modules insufficient, they
can add additional modules. Adding a new module requires
a backend file written in Python and a front end HTML/JS
file to liaise with visualization libraries. The choice between
these two approaches offers a tradeoff between simplicity and
flexibility.

5. MACHINE LEARNING USING GNOT
A major thrust of this work is to allow users to interac-

tively incorporate machine learning models into visual data
mining tasks. GNoT has built in modules to support the
three most commonly used machine learning tasks: classi-
fication (using an SVM), clustering (using k-means), and
regression (using a Ridge regression). We use scikit-learn,
a Python library to support the machine learning tasks in

7http//http://werkzeug.pocoo.org/
8http://documentcloud.github.io/visualsearch/

(a) Visualization Output

(b) User input

Figure 5: To produce a date-based heat map (a)
of the data using Explore calendar is as easy as
submitting the query |MODULE:explore_calendar

TABLE:finance.twitter_feed2 XFIELD:date(created_at

)FIELD:count(*)| from the frontend UI (b).

the built-in machine learning modules. However, the library
can be switched for another with relative ease.

Let us walk through two of modules offering machine learn-
ing tasks: ML SVM and ML K-Means. We assume that the
reader is familiar with using support vector machine (SVM)
classifiers and the K-means clustering algorithm [5, 3].

5.1 ML_SVM
ML SVM allows a user to apply a SVM classifier to the

data. It learns a classifier separating the positives (+1) from
negatives (-1) of a dependent variable using a set of features
(independent variables) and validates its accuracy on a test
set. ML SVM allows user to easily construct a model, in-
teractively tune the hyper parameters of the model, and
visually analyze the fit of the model on the test set.

In the user’s query, the first field is the dependent vari-
able and the rest of the fields are the independent variables
(i.e., the feature vector). The user also specifies the ra-
tio of the data used for training the model and a regular-
ization parameter for the SVM. The module also supports
pre-processing and pre-transformation on the independent
variables. For instance, the user can use builtin modules to
normalize the independent variables by applying whitened
PCA or a Z-score transformation, and then transform the
data to a quadratic scale to better capture the distribution
of the independent variables.

GNoT allows the user to visually investigate the charac-
teristics of the data and the model produced by the SVM.
Using the automatically produced visualization, the user can
analyze the model fit on the test data by brushing and se-
lecting a value range for each independent variable. The
user can then visually examine the corresponding change in
the distribution of the other independent variables and the
model fit.

In ML SVM å, we demonstrate the application of ML SVM
module of GNoT on the Wisconsin breast cancer dataset [2].
Figure 6 shows the resulting page. The side bar provides
the summary of the results. Even with this basic model,
we achieve an accuracy of 97% when predicting 20% of the
samples by learning the model on the rest. The visualiza-
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(a) User input

(b) Visualization Output

Figure 6: (a) Query |MODULE:ml_svm_linear TABLE:

public.breast_cancer_wisconsin FIELD:class-3 FIELD

:cellshape FIELD:thickness FIELD:cellsize FIELD

:normal_nucleoli RATIO:0.8 PRE_PROCESS:Z-Score

REGULARIZER:10 | produces the visualization. (b)
The visualization gives the summary of the results,
feature weights of the model, and receiver operating
characteristic curve (to show the accuracy of the
model on the test data). It also allows the user to
interactively examine the fit of the model on the
test data by brushing and selecting a value range on
each of the independent variable, and corresponding
distributions on other variables.

(a) User input

(b) Visualization Output

Figure 7: (a) Query |MODULE:ml_kmeans TABLE:

public.breast_cancer_wisconsin FIELD:cellshape

FIELD:cellsize FIELD:chromatin FIELD:mitoses FIELD

:thickness K:3 | produces the visualization. (b)
The visualization gives the summary of the model,
cluster spreads, and the distribution of the clusters
against any two fields. It also allows the user
to interactively examine the fit of the model by
brushing and selecting a value range on each of
the fields, and corresponding distributions on other
fields.
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tions allow the users to understand the characteristics of the
model. The bar chart shows the weights of four features and
the intercept (from the linear fit). The next graph shows the
accuracy of the model on the test data with the receiver op-
erating characteristic curve and the area under the curve.
The scatter plot allows the user to visualize the spread of
the samples from the test set on any two dimensions (the
space of any two features) and the projection of the separat-
ing hyperplane on those two dimensions. The color and the
shape of the samples indicate whether they were correctly
classified, and the correct labels of the samples respectively.
The visualizations on this page are connected to each other.
The cross filter allows the user to brush and select a value
range of an independent variable. This will update the dis-
tributions of the rest of the independent variables and the
feature spread. Using cross filter, the user can see the con-
tributing factors for large errors (by filtering by large posi-
tive distances from hyperplane): smaller cell sizes stand out
as the most difficult to predict.

5.2 ML_K-Means
ML K-Means allows a user to apply a K-means cluster-

ing algorithm to the data. The module also supports pre-
processing and pre-transformation on the field values. The
user can analyze the model fit on the data by brushing and
selecting a value range for each of the fields. The user can
also then visually examine the corresponding change in the
distribution of the other fields and the model fit.

In ML K-Means å, we demonstrate the application of
ML K-Means on Wisconsin breast cancer dataset [2]. Using
the resulting page (Figure 7) we can try different field ranges
and their effects in the resulting cluster distributions.

6. USING GNOT: A CASE STUDY
We built GNoT to help with exploring new datasets in

solving real-world applications. We now describe an example
application to demonstrate its usage and capabilities.

In early 2014, MIT Big Data Initiative at CSAIL together
with the City of Boston hosted a Big Data Challenge9 to gain
new insights into how people use all modes of transportation
to travel in and around the downtown Boston area. We use
the Boston taxi dataset from this challenge.

6.1 Exploring Boston taxi data
Below, we outline how one might use GNoT to explore this

dataset, generate hypotheses, and validate them. We use the
demonstration site setup at http://ddmg1.csail.mit.edu:
4999 for following expositions. Links to demo pages are
identified by å whenever they are available.

• We start with a visualization of the raw data using
query |MODULE:explore_raw TABLE:public.d_pickup2

FIELD:* LIMIT:10|. From the output of the Ex-
plore Raw module as available at Pickup: Raw å, we
understand that there are 5 fields: trip id, time, ad-
dress, longitude, and latitude.

• Next, we used the Explore Calendar module to see the
distribution of the data over the time span with query |

MODULE:explore_calendar TABLE:public.d_pickup2

XFIELD:date(time)|. From the output Pickup: Cal-
endar å (Figure 5), we can see that the data spans

9http://bigdatachallenge.csail.mit.edu

Figure 8: Time series module in GNoT:
Comparing the ridership around a location
with that of the whole city using GNoT.

Figure 9: Word module in GNoT: Exploring
the popular words in the pickup addresses
of taxi rides using GNoT.

Figure 10: Multi-field module in GNoT: Vi-
sualizing the hierarchical split by various
features.
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Figure 11: Google maps with crossfilter in GNoT:
Visualizing the factors contributing to the ridership
with GNoT.

from May 1, 2012 to November 30, 2012, and that the
data is missing for about two weeks during the latter
part of August.

• We next used the Explore Diff module to compare the
ridership at specific locations to overall ridership across
Boston with query |MODULE:explore_diff TABLE:public

.d_pickup2 XFIELD:date(time)FIELD:sum(((latitude

-42.354008)^2+(longitude-(-71.062569))^2<

0.00224946357^2)::int)as ridership FIELD:count(*)

as total_ridership|.
In the resulting page Pickup: Diff å, we see that the
ratio fluctuates hugely.

We used Explore Series to get a more detailed view. It
is as easy as changing the module option in the query
box. In the resulting page Pickup: Series å, we have
many types of visualizations at our disposal (Figure
8).

• We used the Explore Word module to see the popular
words in the addresses with query |MODULE:explore_word

TABLE:public.d_pickup2 FIELD:address|. It shows
the words sized according to the number of occur-
rences: Pickup: Word å. When we viewed this vi-
sualization, the word “Boston” was dominant, not sur-
prising given the data set.

We therefore asked it to omit “Boston” with query |

MODULE:explore_word TABLE:public.d_pickup2 FIELD

:address START:1|, and got the visualization Pickup:

Figure 12: ML Ridge Linear module in GNoT: Vi-
sualizing the fit of ridge regression predicting the
number of pickups in an hour window.

Word2 å (Figure 9). (“Unnamed road”is a road within
Logan Airport.)

• We used Explore Multi-Field to understand which lat-
itude, longitude, and specific address with high rider-
ship in query |MODULE:explore_multi-field TABLE:

public.d_pickup2 FIELD:trunc(latitude::numeric,2)

, trunc(longitude::numeric,2), address|. Here,
we truncated the coordinates to the second decimal
point using SQL itself. The resulting visualization
Pickup: Multi-field å is seen in Figure 10. We can
see latitude 42.34 has the highest with 34% of the rid-
ership, out of which longitude -71.08 takes the highest
ridership at 14%. Within this combination, “unnamed
road Boston” (which is part of Boston Logan interna-
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tional airport) takes the highest fraction. Altogether,
it represents 3% of the total taxi ridership.

• However, making sense of the latitudes and longitudes
is easier when they are plotted on a map. We used Ex-
plore Gmap to view them in Google maps with query
|MODULE:explore_gmap TABLE:public.d_pickup2

LATITUDE:trunc(latitude::numeric,3)

LONGITUDE:trunc(longitude::numeric,3)

FIELD:count(*)| and got Pickup: Gmap å.

We also visualized the changes in the ridership against
time with query |MODULE:explore_gmap TABLE:public

.d_pickup2 LATITUDE:trunc(latitude::numeric,3)

LONGITUDE:trunc(longitude::numeric,3)XFIELD:date

(time)FIELD:count(*)| and got Pickup: Gmap2 å.

• In order to gain a deeper insight into the ridership
based on hour of the day, month of the year, and day of
the week, we used Explore Gmap Crossfilter in query
|MODULE:explore_gmap_cross_filter

TABLE:public.d_pickup2 LATITUDE:latitude

LONGITUDE:longitude FIELD:extract(month from

time) as Month FIELD:extract(dow from time)as

Day FIELD:extract(hour from time)as Hour

LIMIT:50000 ORDERBY:random()| and got Pickup: Gmap
Crossfilter å (Figure 11). Using the brushing feature,
we can learn that between 10 PM and 12 AM taxi rides
peak around Boston University, Boylston Street/Pru-
dential Tower, and Terminal E at Boston Logan inter-
national airport.

6.1.1 Machining Learning Models
First, we used k-means to perform unsupervised clustering

of the coordinates with query |MODULE:ml_kmeans TABLE:

public.d_pickup2 FIELD:latitude, longitude LIMIT:1000

K:5|. Arbitrarily, we chose to partition the coordinates into
5 clusters Pickup: K-means å. We observe the segments
formed by dividing the city into 5 explainable regions. We
could also interactively explore different number of segments
by adjusting k.

What if we add the day of the week as the third dimen-
sion? Since the range of the day of the week is not similar
to the range of latitude and longitude (i.e., they have differ-
ent units), we apply Z-score normalization before applying
K-means in the query |MODULE:ml_kmeans TABLE:public.

d_pickup2 FIELD:latitude, longitude, extract(dow from

time)PRE_PROCESS:Z-Score LIMIT:1000 K:5|. Here, we
see a totally different pattern emerging Pickup: K-means2
å.

Now, let’s look at a problem of predicting the number of
pickups within 250 meters of a location (e.g., (-71.057114,
42.343365)) within a given time window. Before building a
complex model, we can use GNoT to visually explore the
data in order to test the viability of the task and identify
useful feature combination.

We used the ML Ridge Linear module to explore the ac-
curacy achievable in predicting the ridership in an hour
with only three features: day of the week, hour of the day,
and month with query |MODULE:ml_ridge_linear TABLE:

public.d_pickup2 FIELD:sum(((latitude-42.354008)^2+(

longitude-(-71.062569))^2<0.00224946357^2)::int)as

ridership FIELD:min(extract(dow from time))as

dayOfWeek FIELD:min(extract(hour from time))as hour

FIELD:min(extract(month from time))as month FIELD:

to_char(time, ’YYYYMMDDHH24’)as t GROUPBY:5

LIMIT:6000|.
We can see the resulting page Pickup: Ridge Linear å

in Figure 12. Even with this basic model, we achieve a
coefficient of determination (R2 = 0.22) when predicting
10% of the time windows by learning the model on the
rest. Using GNoT, we can also try different feature com-
binations, feature transformations such as applying inter-
actions and quadratic transformations on the features, and
pre-processing such as applying Z-score or PCA transforma-
tion.

6.2 Custom solution with GNoT
The visualizations built with GNoT to assist with rapid

visual data mining, called Boston Rides å10, won the first
prize in the competition. Boston Rides is a customized ver-
sion of GNoT where the user’s queries are hardcoded, and
they are guided through a predefined exploration path.

Boston Rides allows the user to explore the data through
6 different visualization types: hotspots for pickups, daily
and hourly variations of ridership (Figure 13), popular intra-
city routes, factors contributing to variations in pickups, and
machine learning generated models that predict the number
of pickups in an hour window using various features.

Figure 13: Daily and hourly variation in ridership
as visualized in Boston rides with GNoT. The mod-
ule makes use of D3 and the Google maps API to
construct the visualization. The popup box in the
figure contains the guide.

6.3 Discussion
One of the biggest advantages with GNoT is that it offers

the choice between the ease of use and flexibility.
In the first part of the case study (Section 6.1), we used

existing modules. This requires neither programming nor
software engineering expertise, and allows us to rapidly ex-
plore the data with great ease. Each query requires very

10http://bostonrides.info
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minimal input from the user, and the queries are intuitive
as they follow the SQL style.

For the second part of the case study (Section 6.2), we
demonstrated the use of customized modules. Customizing
GNoT to build Boston Rides took less than 10 human-hours.
Using a low-level tool or a language framework such as R
would have been far more timing consuming and would have
lacked the interactive features offered by GNoT. Using an in-
tegrated solution such as IBM’s many eyes or Tableau would
constrain the flexibility in making use of external libraries to
offer complex machine learning capabilities. The resulting
solution would still lack the latest interactive features of-
fered by D3. Finally, building a system from the scratch by
connecting individual components: an RDBMS (e.g., Ver-
tica), machine learning library (Weka), and a graphics li-
brary (D3), would result in a solution similar to that of
GNoT, but only after spending many more human hours.

7. SUMMARY
Visual data mining combines the flexibility, creativity, and

general knowledge of a human with brute computational
power. In this paper, we describe a novel system, GNoT,
that supports interactive knowledge discovery by intercon-
necting state of the art tools for visualization, relational
database management, and machine learning. The system
provides the glue connecting these kinds of components, and
thus is able to “ride the wave” of improvements in each of
these areas.
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APPENDIX
Table 1 lists the basic set of core modules. The table also
details the fields supported by the modules. A few other
fields are also optionally supported by many modules.

• orderBy: Order by field is useful in selecting a desired
region when used together with limit and start. Time
series (the modules that expect X Field) are always
ordered by X Field.

• groupBy: When groupBy fields are used, values fields
must be aggregates.

In addition to the required and optional inputs lists in the
table, all modules support the following optional fields.

• where: Text entry used to filter data (e.g. total >
1000).

• limit: A numeric entry to limit the number of records
retrieved (e.g. 1000). Typically each module assumes
a reasonable limit when this option is not specified.

• start: A numeric entry representing the offset (e.g.
1000).

• reload: A binary switch instructing GNoT to ignore the
cache.

• view: When fields are derived from a complex query, it
is best specified inside as a view. Then, the supplied
table is ignored and query is executed against this view.
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Module Description Required Inputs Optional Inputs
Raw Outputs the raw data Table T , Fields f1 . . . fn groupBy fields fa1 . . . far ,

orderBy fields fb1 . . . fbs
Calendar Displays date-based heatmap of data Table T , X Field fdate, Value field

fval
1

-

Field Shows relative frequency of values within
a field

Table T , Field f -

Multi-Field Shows relative frequency of values of
multiple fields in a hierarchical manner

Table T , Fields f1 . . . fn -

Series Plots multiple time series. Can be vi-
sualized as an area, bar, line, or scatter
plot with multiple options for combining
series and smoothing plots. Can be an-
notated by a field in the same table

Table T , X Field fx, Y Fields
fy1 . . . fyn

Annotation field fa, or-
derBy fields fb1 . . . fbs

Diff Plots the difference of two fields in a time
series

Table T , X Field fx, Y Fields
fy1, fy2

orderBy fields fb1 . . . fbs

Word Uses word cloud to display frequency of
words in a collection of text

Table T , Text field ft -

Word Series Plots the frequency of words over time. Table T , X Field fx, Text Field fy -
Graph Undirected graph with distinguishable

node types
Table T , Source Field fs, Target
Field ft

orderBy fields fb1 . . . fbs

Matrix Visualization of a sortable matrix where
cells represent values between entities.
Optional field Linkgroup can be used to
cluster nodes.

Table T , Source Field fs, Target
Field ft, Value Field fval

Linkgroup Field fc, or-
derBy fields fb1 . . . fbs

Digraph Directed graph with node values Table T , Source Field fs, Target
Field ft, Value Field fval

orderBy fields fb1 . . . fbs

Scatter Visualization of scatter plot on a two di-
mensional plane fx, fy. Two additional
fields determine the radius (fz) of the
markers and grouping (class fc).

Table T, Value fields fx, fy, fz, fc groupBy fields fa1 . . . far ,
orderBy fields fb1 . . . fbs

Correlations Creates a scatter plot matrix where each
node is a plot of the values of one field
against the values of another. Values can
be filtered on all plots by selecting a re-
gion on a single plot. First field repre-
sents the sample classes.

Table T , Value fields fc, fv1 . . . fvn .
Limit number of fields to 5

groupBy fields fa1 . . . far ,
orderBy fields fb1 . . . fbs

Bar Simple bar graph Table T , Fields fx, fy -
Crossfilter Plots distribution of values for each field.

Values can be filtered on all plots by se-
lecting a region on a single plot.

Table T , Value Fields fv1 . . . fvn groupBy fields fa1 . . . far ,
orderBy fields fb1 . . . fbs

gMaps The distribution of locations is displayed
in heatmap format with an interactive
map display. If fx is specified, then time
play of the heatmap against fx is pro-
vided.

Table T , Longitude field flon, Lati-
tude field flat

X Field fx, Value field f1
1

gMaps Crossfilter In addition to the heatmap, user is also
given a histogram of each of the speci-
fied filtering fields ff1 . . . ffn. The user
can select ranges of values within these
distributions to display on the map.

Table T , Longitude field flon,
Latitude field flat, filtering fields
ff1 . . . ffn

ML K-Means Cluster into k clusters using the K-means
clustering algorithm

Table T , Value fields f1 . . . fn, Num-
ber of clusters k

Pre-processing method
(PCA, Whitened PCA, or
Z-Score), pre-transform
method (Quadratic,
Purely quadratic, or
Interaction), groupBy
fields fa1 . . . far , orderBy
fields fb1 . . . fbs

ML Ridge Fraction r of X is used to train a linear
regression model. The remaining (1 − r)
fraction is then used as a test set.

Table T , Value fields fields
fY , fX1 . . . fXn , regularizer α,
ratio r

ML SVM Similar to ML Ridge, but performs clas-
sification using SVM algorithm

Table T , Value fields fields
fY , fX1 . . . fXn ,regularizer α,
ratio r

Table 1: List of core modules
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ABSTRACT
Given a sequence generated by a random mixture of inde-
pendent processes, we study compression-based methods for
decomposing the sequence into independent subsequences
each corresponds to an independent process. We first show
that the decomposition which results in the optimal com-
pression length in expectation actually corresponds to an
independent decomposition. This theoretical result encour-
ages us to look for the decomposition that incurs the mini-
mum description length to solve the independent decompo-
sition problem. A hierarchical clustering algorithm is pro-
posed to find that decomposition. We perform experiments
with both synthetic and real-life datasets to show the effec-
tiveness of our method in comparison with the state of the
art method.

General Terms
Data mining

Keywords
Pattern mining, independent component decomposition, min-
imum description length principle, data compression

1. INTRODUCTION
Many processes produce extensive sequences of events,

e.g. alarm messages from different components of indus-
trial machines or telecommunication networks, web-access
logs, clickstream data, geographical events record, etc. In
many cases, a sequence consists of a random mixture of in-
dependent or loosely connected processes where each process
produces a specific disjoint set of events that are indepen-
dent from the other events.

It is useful to decompose the sequence into a number of in-
dependent subsequences. This data preprocessing step pro-
vides us with a lot of conveniences for further analysis with
each independent process separately. In fact, independent
sequence decomposition was used to improve the accuracy of
predictive models by building local predictive model for each
independent process separately instead of building it for the

whole data [1, 2]. Besides, in descriptive data mining, people
are usually interested in summarizing the data. They are ea-
ger to discover the dependency structure between events in
the data and also want to know how strong the dependency
is in each independent component [14]. If the dependency
in a component is strong, it maybe associated with an ex-
plainable context that can help people understand the data
better.

The sequence independent decomposition problem was first
introduced by Mannila et al. in [3]. The authors proposed
a method based upon a statistical hypothesis testing for the
dependency between events. A drawback of the statistical
hypothesis testing method is that the p-value derived from
the test is a score subjective to the null hypothesis. The p-
value does not convey any information about how strong the
dependency between the events is. Moreover, the method in-
troduces two parameters which require manual tunings for
different applications. The method is also easily vulnerable
to false detected connections between events (see the discus-
sion in the next section for an example).

In this paper, we revisit the independent decomposition
problem from the prospect of data compression. In order
to illustrate the connection between data compression algo-
rithms and the independent decomposition problem let us
first consider a simple example. Assume that we have two
sequences:

S1 = abababababababababababababababab

S2 = aaababbbabbaabbaabababaaabbbabab

The first sequence is very regular, after an occurrence of a
there is an occurrence of b. In this case, it is clear that a and
b are two dependent events. We can exploit this information
to compress the sequence as follows: send the decoder the
number of repetitions of ab, i.e. 16 times in S1. Then we
send the binary representations of a and b together. If the
Elias code [4] is used to compress the natural number 16 and
one bit is used to represent either a or b, the compressed size
of S1 is 9 + 1 + 1 = 11 bits. On the other hand, if we do not
exploit the dependency between a and b we need at least 32
bits to represent S1. Therefore, by exploiting the knowledge
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Figure 1: An example of two strongly connected and
independent components. False connection between
b and d is recognized just by chance or due to noise.
The Dtest algorithm will merge two components to-
gether even only one false connection happens.

about the dependency between a and b we compress the
sequence far better than the compression that considers a
and b separately.

The second sequence seems like a random mixture be-
tween two independent events a and b. In this case, it does
not matter how a compression algorithm does, the compres-
sion result will be very similar to the result of the compres-
sion algorithm that considers a and b separately.

In common-sense, two examples lead us to an intuition
that if we can find the best way to compress the data then
that compression algorithm may help us to reveal the de-
pendency structure between events in a sequence simply be-
cause it will exploit that information for doing compression
better. This intuition is inline with the general idea of the
Minimum Description Length (MDL) principle [5] which al-
ways suggests that the best model is the one that describes
the data in the shortest way. We get to the point to ask a
fundamental question: What is the connection between the
best model by the definition of the MDL principle [5] and
the independent decomposition problem?

In this work, we study theoretical answers for the afore-
mentioned question. In particular, we prove that the best
model by the definition of the MDL principle actually cor-
responds to an independent decomposition of the sequence.
This theoretical result motivates us to propose a data com-
pression based algorithm to solve the independent decompo-
sition problem by looking for a decomposition that can be
used to compress the data most.

Beside being parameterless, the compression-based method
provides us with a measure based on compression ratios
showing how strong the connection between events of an in-
dependent component is. It can be considered as an interest-
ingness measure to rank different independent components.
We validate our method and compare it to the statistical
hypothesis testing based approach [3] in an experiment with
synthetic and real-life datasets.

2. RELATED WORKS
The sequence independent decomposition problem was first

studied by Mannila et al. in [3]. The authors proposed a
method based on statistical hypothesis testing for depen-
dency between events. In this work, we call their method
Dtest as for Dependency Test. The algorithm first performs
dependency tests for every pair of events. Subsequently, it
builds a dependency graph in which vertices correspond to
events and edges connecting two dependent events.

An independent component of the output decomposition

corresponds to a connected component of the graph. The
Dtest approach has a drawback: it can merge two indepen-
dent components together even when there is only one false
connection (not a connection but erroneously detected as
a connection) between two vertices across two components.
For instance, Figure 1 shows two strongly connected compo-
nents g1 and g2 of the dependency graph. If the dependency
test between b ∈ g1 and d ∈ g2 produces wrong result, i.e. b
and d pass the dependency test even they are independent,
two independent components g1 and g2 will be merged into
a single component.

In the experiment, we show that false connection is usu-
ally the case because of the following two reasons. First,
the Dtest algorithm has two parameters. Setting of these
parameters to avoid false connections is not always a triv-
ial task. Second, the dependency between b and d can be
incorrectly detected due to noises. Being different from the
Dtest algorithm, our compression-based method is not eas-
ily vulnerable to false connections. Indeed, if two strongly
connected components are independent to each other, the
loose connection between b and d is not an important factor
that can improve the compression ratio significantly when
the two components are compressed together.

Indeed, independent component analysis for other types
of data is a well studied problem in the literature [6]. For
example, the ICA method was proposed to decompose a
time series into independent components. However, the ICA
method does not handle event sequence data.

Another closely related work concerns the item clustering
problem studied under the context of itemset data [7]. The
authors proposed a method to find clusters of strongly re-
lated items for data summarization. The work relies on the
MDL principle which clusters items together such that it
minimizes the description length of the data when the clus-
ter structure is exploited for compressing the data. On one
hand, our work proposes a different encoding to handle se-
quence data which is not handled by the encoding of [7]. On
the other hand, we show a theoretical connection between
the MDL principle and the independent component analy-
sis. It gives a theoretical judgement for the model usually
neutrally accepted as the best model by the definition of the
MDL principle.

Finally, the idea of using data compression algorithms in
data mining is not new. In fact, data compression algo-
rithms were successfully used for many data mining tasks
including data clustering [8] or data classification [9]. It was
also used for mining non-redundant set of patterns in item-
set data [10] and in sequence data [11]. Our work is the first
one that proposes to use data compression for solving the
independent sequence decomposition problem.

3. PROBLEM DEFINITION
Let

∑
= {a1, a2, · · · , aN} be the alphabet of events; de-

note St = x1x2 · · ·xt as a sequence, where each xi ∈
∑

is generated by a random variable Xi ordered by its times-
tamp. The length of a sequence S is denoted as |S|.

We assume that S is generated by a stochastic process P.
For any natural number n, we denote Pt(Xt = xt, Xt+1 =
xt+1, · · · , Xt+n−1 = xt+n−1) as the joint probability of the
sequence Xt+1, Xt+2, · · · , Xt+n−1 governed by the stochas-
tic process P, i.e. the probability of observing the subse-
quence xtxt+1 · · ·xt+n−1 at time point t.

A stochastic process is called stationary [4] if for any n the
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joint probability Pt(Xt = xt, Xt+1 = xt+1, · · · , Xt+n−1 =
xt+n−1) does not depend on t, which means that Pt(Xt =
xt, Xt+1 = xt+1, · · · , Xt+n−1 = xt+n−1) = P1(X1 = x1, X2 =
x2, · · · , Xn = xn) for any t ≥ 0. In this work, we consider
only stationary processes as in practice a lot of datasets
are generated by a stationary process [4]. This assump-
tion is made for convenience in our theoretical analysis al-
though it is not a requirement for our algorithms to oper-
ate properly. Therefore, for a stationary process the joint
probability Pt(Xt, Xt+2, · · · , Xt+n−1) is simply denoted as
P (X1, X2, · · · , Xn). For a given sequence S the probability
of observing the sequence is simply denoted as P (S).

Let C = {C1, C2, · · · , Ck} be a partition of the alphabet∑
into k pairwise disjoint parts, where Ci

⋂
Cj = ∅ ∀i 6= j

and
⋃k
i=1 Ci =

∑
. Given a sequence S, the partition C

decomposes S into k disjoint subsequences denoted as S(Ci)
for i = 1, 2, · · · , k. Let Pi(S(Ci) = s) denote the marginal
distribution defined on a set of subsequence with fixed size
|s| < |S|.

Example 1. Let the alphabet
∑

= {a, b, c, d, e, f, g} be
partitioned into three disjoint parts: C = {C1, C2, C3} where
C1 = {a, b, c}, C2 = {d, e} and C3 = {f, g}. The partition
C decomposes the sequence S = abdffeadcdeabgg into three
subsequences S(C1) = abacab, S(C2) = dedde and S(C3) =
ffgg.

Denote αi as the probability of observing an event belonging
to the cluster Ci. Assume that Pi is the stochastic process
that generates S(Ci).

Definition 1 (Independent decomposition). We say
that C = {C1, C2, · · · , Ck} is an independent decomposition
of the alphabet if S is a random mixture of independent sub-
sequences S(Ci):

P

(
S

(
k⋃
i=1

Ci

))
=

k∏
i=1

α
|S(Ci)|
i Pi (S(Ci))

There are many independent decompositions, we are in-
terested in the decomposition with maximum k; denote that
decomposition as C∗. The problem of independent sequence
decomposing can be formulated as follows:

Definition 2 (Sequence decomposition). Given a se-
quence S and an alphabet

∑
, find the maximum independent

decomposition C∗ of S.

Theorem 1 (Unsolvable). Observing a sequence gen-
erated by a stochastic (stationary) process with bounded size
M there is no deterministic algorithm that solves the se-
quence independent decomposition problem exactly.

Proof. Assume that there is a deterministic algorithm
A that can return the maximum independent decomposi-
tion exactly when up to 2 ∗ M events of a sequence are
observed. Consider the following alphabet

∑
= {a, b} and

two different stationary processes:

• The events a and b are drawn independently at random
with probability 0.5

• The events a and b are drawn from a simple Markov
chain with two states a and b and P (a 7→ b) = P (b 7→
a) = 1.0

The sequence S = (ab)M with length 2M can be gener-
ated by both stationary processes with non-zero probability.
Therefore, by observing S, the algorithm A cannot decide
the maximum independent decomposition C∗ because for
the latter process C∗ = {{a, b}} while for the former pro-
cess C∗ = {{a}, {b}}. This point leads to contradiction.

4. SEQUENCE COMPRESSION
Given an observed sequence with bounded size, Theorem

1 shows that the problem in Definition 2 is unsolvable. How-
ever, in this section we show that it can be solved asymptot-
ically by using data compression algorithms. We first define
encodings that we use to compress a sequence S given a
decomposition C = {C1, C2, · · · , Ck}.

Given an event ai denote I(ai) = j as the identifier of the
cluster (partition) Cj which contains ai. Let S = x1x2 · · ·xn
be a sequence, denote I(S) as the cluster identifier sequence,
i.e. I(S) = I(x1)I(x2) · · · I(xn).

Example 2. In Example 1, given the decomposition C1 =
{a, b, c}, C2 = {d, e} and C3 = {f, g} the cluster identifier
sequence of S is I(abdffeadcdeabgg) = 112332121221133.

If the distribution of the cluster identifiers is given as
α = (α1, α2, · · · , αk) , where

∑k
j=1 αj = 1, the Huffman

code [4] can be used to encode each cluster identifier j in the
sequence I(S) with a codeword with length proportional to
− logαj . In expectation, if the identifiers are independent to
each other that encoding results in the minimum compres-
sion length for the cluster identifier sequence [4]. Denote
E∗(I(S)) as the encoded form of I(S) in that ideal encod-
ing.

In practice, we don’t know the distribution (α1, α2, · · · , αk).
However, the distribution can be estimated from data. An
encoding is called asymptotically optimal if:

lim
S 7→∞

|E+(I(S))|
|S| = H(α)

Where H(α) denotes the entropy of the distribution α.
An example of E+ is the one that uses the empirical value
|S(Ci)|
|S| as an estimate of αi.

Let Z be a data compression algorithm that gets the in-
put as a sequence and returns the compressed form of that
sequence. Z is an ideal compression algorithm denoted as
Z∗ if |Z∗(S)| = − logP (S). In expectation, Z∗ results
in the minimum compression length for the data [4]. In
practice, we don’t know the distribution P (S) however we
can use an asymptotic approximation of the ideal compres-
sion algorithm, e.g. the Lempel-Ziv algorithms [4]. An
algorithm is asymptotically optimal denoted as Z+(S) if

lim
S 7→∞

|Z+(S)|
|S| = H(P), where P is the stationary process

that generates S.
Given a decomposition C = {C1, C2, · · · , Ck} and a com-

pression algorithm Z, the sequence S can be compressed in
two parts, the first part corresponds to the compressed form
of the identifier sequence I(S). The second part contains k
compressed subsequences Z(S(C1)), Z(S(C2)), · · · , Z(S(Ck)).
In summary, the compressed sequence consists of the size of
the sequence in an encoded form denoted as E(|S|), the com-
pressed form of the cluster identifier sequence and k com-
pressed subsequences. In this work, we use the term ideal
encoding to refer to the encoding that uses E∗ and Z∗ and
asymptotic encoding to refer to the encoding that uses E+

and Z+.
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Example 3. In Example 1, given the decomposition C1 =
{a, b, c}, C2 = {d, e} and C3 = {f, g}, the sequence S in Ex-
ample 1 can be encoded as follows: E(15) E(I(S)) Z(S(C1))
Z(S(C2)) Z(S(C3))

5. THE MDL PRINCIPLE AND INDEPEN-
DENT DECOMPOSITIONS:

The description length of the sequence S using the de-
composition C can be calculated as: LC(S) = |E(|S|)| +
|E(I(S))| +

∑k
i=1 |Z(S(Ci))|. In this encoding, the term

|E(|S|)| is invariant when S is given. The decomposition
C can be considered as a model and the cost to describe
that model is equal to the term |E(I(S))|, meanwhile the

latter term
∑k
i=1 |Z(S(Ci))| corresponds to cost of describ-

ing the data given the model C. Therefore, according to the
minimum description length principle we may try to find a
decomposition resulting in the minimum description length
in expectation, which is believed to be the best model for
describing the data.

This section introduces two key theoretical results: sub-
section 5.1 shows an ideal analysis that given the data with
bounded size, under an ideal encoding the best model de-
scribing the data corresponds to an independent decomposi-
tion and vice versa. Subsection 5.2 discusses an asymptotic
result showing that under an asymptotic encoding, any in-
dependent decomposition corresponds to the best model by
the definition of the MDL principle.

5.1 Analysis under the ideal encoding
We recall some definitions in information theory. Given a

discrete probability distribution P = {α1, α2, · · · , αk} where∑k
i=1 αi = 1, the entropy of the distribution P denoted as

H(P ) is calculated as −
∑k
i=1 αi logαi.

Given a stochastic process P which generates the sequence
S, denote H(P) as the entropy rate or entropy for short of
the stochastic process P. Recall that H(P) is defined as

lim
n7→∞

1

n
H(X1, X2, · · · , Xn), whereH(X1, X2, · · · , Xn) stands

for the joint entropy of the random variablesX1, X2, · · · , Xn.
It has been shown that when P is a stationary process

lim
n7→∞

1

n
H(X1, X2, · · · , Xn) exists [4].

Theorem 2 (MDL vs. independent decompositio).
Under an ideal encoding, given data with bounded size, the
best decomposition which results in the minimum data de-
scription length in expectation is an independent decomposi-
tion and vice versa.

Proof. Given a decomposition C = {C1, C2, · · · , Ck},
for a given n assume that S is a sequence with length n.
Under an ideal encoding, the description length of the cluster
identifier sequence of S is |E∗(I(S))| = −

∑k
i=1 |S(Ci)| logαi.

In the ideal encoding, since the length of the compressed
subsequence Z∗(S(Ci)) is |Z∗(S(Ci))| = − logPi(S(Ci)) the
total description length is:

LC(S) = |E(n)| −
k∑
i=1

|S(Ci)| logαi (1)

−
k∑
i=1

logPi(S(Ci)) (2)

E(LC(S)) =
∑
|S|=n

P (S) ∗ LC(S) (3)

= |E(n)| −
∑
|S|=n

P (S) (4)

log

k∏
i=1

α
|S(Ci)|
i Pi(S(Ci)) (5)

= |E(n)|+HP (X1, X2, · · · , Xn) + (6)

D(P |Q) (7)

Where Q is the random mixture of the distributions Pi de-
fined on the space of all sequence S : |S| = n, i.e. Q(S) =∏k
i=1 α

|S(Ci)|
i Pi(S(Ci)) and D(P |Q) is the relative entropy

or the Kullback-Leibler distance between P and Q. Since
D(P |Q) ≥ 0 [4] we can imply that E(LC(S)) ≥ |E(n)| +
HP (X1, X2, · · · , Xn). The equality happens if and only if
D(P |Q) = 0, i.e. P ≡ Q which proves the theorem.

5.2 Analysis under the asymptotic encoding
In the ideal analysis, it requires an ideal encoding which

is not a practical assumption. However, we can still prove a
similar result under an asymptotic encoding. First, we prove
a basic supporting lemma. The lemma is a generalized result
of the Cesàro mean [12].

Lemma 1. Given a sequence (an), a sequence (cn) is de-

fined as : cn =

n∑
i=1

bi(n)ai where

n∑
i=1

bi(n) = 1 and bi(n) > 0

∀n > 0. If lim
n7→∞

an = A and lim
n7→∞

bi(n) = 0 ∀i > 0 then we

also have lim
n7→∞

cn = A.

Proof. Since lim
n7→∞

an = A given any number ε > 0 there

exists N such that |an−A| < ε
2
∀n > N . Moreover, because

lim
n7→∞

an = A there exists an upper bound D on |ai −A|.
Given N , since lim

n7→∞
bi(n) = 0 we can choose Mi (i =

1, 2, · · · , N) such that bi(n) < ε
2ND

∀n > Mi. Let denote
M as the maximum value of the set {N,M1,M2, · · · ,MN}.
For any n > M , we have:

|cn −A| = |
n∑
i=1

bi(n)ai −A| (8)

≤ |
N−1∑
i=1

bi(n)(ai −A)|+ (9)

|
n∑

i=N

bi(n)(ai −A)| (10)

≤ (N − 1)D
ε

2ND
+
ε

2
(11)

≤ ε (12)

The last inequality proves the lemma.

Theorem 3 (Independent decomposition entropy).
Assume that C = {C1, C2, · · · , Ck} is an independent de-
composition and Pi is the stochastic process that generates
S(Ci). Denote αi as the probability that we observe an event
belonging to the cluster Ci, we have:

H(P) =

k∑
i=1

αiH(Pi) +H(α1, α2, · · · , αk) (13)
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Proof. We first prove a special case with k = 2 from
which the general case for any k can be directly implied.
Denote H(X1, X2, · · · , Xn) as H for short. In fact, by the
definition of the joint entropy we can perform simple calcu-
lations as follows:

H = −
∑
|S|=n

P (S) logP (S) (14)

= −
∑
|S|=n

α
|S(C1)|
1 P1(S(C1))α

|S(C2)|
2 P2(S(C2))(15)

log
(
α
|S(C1)|
1 P1(S(C1))α

|S(C2)|
2 P2(S(C2))

)
(16)

= −C|S1|
n

∑
|S1|≤n

∑
|S2|=n−|S1|

α
|S1|
1 P1(S1) (17)

α
|S2|
2 P2(S2) log

(
α
|S1|
1 P1(S1)α

|S2|
2 P2(S2)

)
(18)

We denote each term of Equation 18 as follows:

X = −C|S1|
n

∑
|S1|≤n

∑
|S2|=n−|S1|

α
|S1|
1 P1(S1)α

|S2|
2 (19)

P2(S2) logα
|S1|
1 (20)

Y = −C|S1|
n

∑
|S1|≤n

∑
|S2|=n−|S1|

α
|S1|
1 P1(S1)α

|S2|
2 (21)

P2(S2) logα
|S2|
2 (22)

Z = −C|S1|
n

∑
|S1|≤n

∑
|S2|=n−|S1|

α
|S1|
1 P1(S1)α

|S2|
2 (23)

P2(S2) logP1(S1) (24)

T = −C|S1|
n

∑
|S1|≤n

∑
|S2|=n−|S1|

α
|S1|
1 P1(S1)α

|S2|
2 (25)

P2(S2) logP2(S2) (26)

We calculate each term of Equation 18 as follows:

X = −
n∑
i=0

Cin
∑
|S1|=i

∑
|S2|=n−i

αi1α
n−i
2 (27)

P1(S1)P2(S2) logαi1 (28)

= −
n∑
i=0

Cinα
i
1α

n−i
2 logαi1 (29)∑

|S1|=i

∑
|S2|=n−i

P1(S1)P2(S2) (30)

= −
n∑
i=0

Cinα
i
1α

n−i
2 logαi1 (31)

= − logα1

n∑
i=0

iCinα
i
1α

n−i
2 (32)

= −nα1 logα1 (33)

With similar calculation we have Y = −nα2 logα2. We

continue with the calculation of Z:

Z = −
n∑
i=0

Cin
∑
|S1|=i

∑
|S2|=n−i

αi1α
n−i
2 (34)

P1(S1)P2(S2) logP1(S1) (35)

= −
n∑
i=0

Cin
∑
|S1|=i

αi1α
n−i
2 P1(S1) logP1(S1) (36)

∑
|S2|=n−i

P2(S2) (37)

= −
n∑
i=0

Cin
∑
|S1|=i

αi1α
n−i
2 P1(S1) logP1(S1) (38)

= −
n∑
i=0

Cinα
i
1α

n−i
2

∑
|S1|=i

P1(S1) logP1(S1) (39)

=

n∑
i=1

Cinα
i
1α

n−i
2 HP1(X1, X2, · · · , Xi) (40)

With similar calculation we also have:

T =

n∑
i=1

Cinα
n−i
1 αi2HP2(X1, X2, · · · , Xi)

Therefore we further imply that:

H = X + Y + Z + T (41)

= nH(α1, α2) + (42)
n∑
i=1

Cinα
i
1α

n−i
2 ∗HP1(X1, X2, · · · , Xi) + (43)

n∑
i=1

Cinα
n−i
1 αi2HP2(X1, X2, · · · , Xi) (44)

H

n
= H(α1, α2) + (45)

α1

n∑
i=1

Ci−1
n−1α

i−1
1 αn−i2

1

i
HP1(X1, · · · , Xi) + (46)

α2

n∑
i=1

Ci−1
n−1α

n−i
1 αi−1

2

1

i
HP2(X1, X2, · · · , Xi)(47)

Besides, we have:

lim
n7→∞

1

n
H(X1, · · · , Xn) = H(P)

lim
n7→∞

1

n
HP1(X1, · · · , Xn) = H(P1)

lim
n7→∞

1

n
HP2(X1, · · · , Xn) = H(P2)

Therefore, according to Lemma 1 from the last equation
we can imply thatH(P) = α1H(P1)+α2H(P2)+H(α1, α2).

The last result can be easily generalized for an indepen-
dent decomposition with any k clusters by induction. In-
deed, we assume that the theorem is correct with k = l
we prove that the result holds for k = l + 1. Denote α as∑l
i=1 αi. Given two independent stochastic processes P and

Q denote the random mixture of them as P
⊕

Q. Consider
the process defined as the random mixture of P1,P2 · · ·Pl

denoted as P1

⊕
P2

⊕
· · ·
⊕

Pl. Since Pl+1 and the se-
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quence P1

⊕
P2

⊕
· · ·
⊕

Pl are independent we have:

H(P) = H(P1

⊕
P2

⊕
· · ·
⊕

Pl+1) (48)

= αH(P1

⊕
P2

⊕
· · ·
⊕

Pl) + (49)

αl+1H(Pl+1) +H(α, αl+1) (50)

Moreover, by the induction assumption:

H(P1

⊕
P2

⊕
· · ·
⊕

Pl) =

k∑
i=1

αi
α
H(Pi) + (51)

H(
α1

α
,
α2

α
, · · · , αl

α
).(52)

Replacing this value to Equation 50, we can obtain Equation
13 from which the theorem is proved.

Theorem 3 shows that the entropy of the stochastic pro-
cess P can be represented as the sum of two meaningful
terms. The first termH(α1, α2, · · · , αk) actually corresponds
the average cost per element of the cluster identifier. Mean-
while the second term

∑k
i=1 αiH(Pi) corresponds to the av-

erage cost per element to encode the subsequences S(Ci).
By that important observation we can show the following
asymptotic result:

Theorem 4 (Asymptotic result). Under an asymp-
totical encoding, the data description length in an indepen-
dent decomposition is asymptotically optimal with probability
equal to 1.

Proof. Let C = {C1, C2, · · · , Ck} be an independent de-
composition, for any n assume that S is a sequence with
length n. Under an asymptotic encoding, the description
length of the data is:

LC(S) = |E(n)|+ |E+(I(S))|+
k∑
i=1

Z+(S(Ci)) (53)

LC(S)

|S| =
|E(n)|
|S| +

|E+(I(S))|
|S| +

∑k
i=1 Z

+(S(Ci))

|S| (54)

LC(S)

|S| =
|E(n)|
|S| +

|E+(I(S))|
|S| +

k∑
i=1

|S(Ci)|
|S|

Z+(S(Ci))

|S(Ci)|
(55)

Pr

(
lim
|S|7→∞

LC(S)

|S| = H(α1, α2, · · · , αk) +

k∑
i=1

αiH(Pi)

)
= 1 (56)

Pr

(
lim
|S|7→∞

LC(S)

|S| = H(P)

)
= 1 (57)

The last equation is a direct result of Theorem 3. Since
H(P) is the lower-bound on the expectation of the average
compression size per element of any data compression algo-
rithm the encoding using the independent decomposition is
asymptotically optimal.

The ideal analysis shows the one-to-one correspondence be-
tween the optimal encoding and an independent decomposi-
tion. The asymptotic result only shows that an independent
decomposition asymptotically corresponds to an optimal en-
coding. The theorem does not prove the reverse correspon-
dence; however, in experiments we empirically show that the
correspondence is one-to-one.

Algorithm 1 Dzip(S)

1: Input: a sequence S, an alphabet
∑

= {a1a2 · · · aN}
2: Output: a decomposition C
3: C ← {C1 = {a1}, C2 = {a2}, · · · , Cn = {an}}
4: while true do
5: max← 0
6: C∗ ← C
7: for i = 1 to |C| do
8: for j = i+ 1 to |C| do
9: C+ ← C with merged Ci and Cj

10: if LC(S)− LC
+

(S) > max then

11: max← LC(S)− LC
+

(S)
12: C∗ ← C+

13: end if
14: end for
15: end for
16: if |C∗| = 1 or max = 0 then
17: Return C∗

18: end if
19: end while

6. ALGORITHMS
The theoretical analysis in Section 5 encourages us to de-

sign an algorithm that looks for the best decomposition to
find an independent decomposition. When an independent
decomposition is found, the algorithm can be recursively
repeated on each independent component to find the maxi-
mum independent decomposition. Given data S with alpha-
bet

∑
this section discusses a hierarchical clustering algo-

rithm called Dzip to find the desired decomposition.
Algorithm 1 shows the main steps of the Dzip algorithm.

It starts with N clusters each contains only one character
of the alphabet. Subsequently, it evaluates the compression
benefit of merging any pair of clusters. The best pair of clus-
ters which results in the smallest compression size is chosen
to be merged together. These steps are repeated until there
is no compression benefit of merging any two clusters or all
the characters are already merged into a single cluster.

Dzip can be recursively applied on each cluster to get the
maximum decomposition. However, in our experiment we
observe that in most of the cases the cluster found by Dzip
cannot be decomposed further because of the bottom-up
process which already checks for the benefits of splitting the
cluster.

Dzip uses the Lempel-Ziv-Welch (LZW) implementation
[4] with complexity linear in the size of the data. It utilizes
an inverted list data structure to store the list of positions
of each character in the sequence. Moreover, it also caches
compression size of merged clusters. In doing so, in the worst
case the computational complexity of Dzip can be bounded
as O(|S|N2) . This number is the same as the amortized
complexity of the Dtest algorithm [3].

7. EXPERIMENTS
We consider the dependency test method Dtest [3] as a

baseline approach. All the experiments were carried out on
a 16 processor cores, 2 Ghz, 12 GB memory, 194 GB local
disk, Fedora 14 / 64-bit machine. The source codes of Dtest
and Dzip in Java and the datasets are available for download
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in our project website1.
Dtest has two parameters: the significance value α and

the gap number G. We choose α = 0.01 and G = 300 as
recommended in the paper [3]. We also tried to vary α and G
from small to large and observed quite different results. The
algorithm is slow when G increases, while smaller value of α
results in low false positive yet high false negative rate and
vice versa. However, the results with different parameters
do not change the comparisons in our experiments.

7.1 Synthetic data
There are three datasets in this category for which the

ground truths are known:

• Parallel: is a synthetic dataset which mimics a typical
situation in practice where the data stream is gener-
ated by five independent parallel processes. Each pro-
cess Pi (i = 1, 2, · · · , 5) generates one event from the
set of events {Ai, Bi, Ci, Di, Ei} in that order. In each
step, the generator chooses one of five processes uni-
formly at random and generates an event by using that
process until the stream length is 1M.

• Noise: is generated in the same way as the parallel
dataset but with additional noises. A noise source
generates independent events from a noise alphabet
with size 1000. Noise events are randomly mixed with
parallel dataset. The amount of noises is 20% of the
parallel data. This dataset is considered to see how
the methods will be sensitive to noise.

• HMM: is generated by a random mixture of two dif-
ferent hidden Markov models. Each hidden Markov
model has 10 hidden states and 5 observed states. The
transition matrix and the emission matrix are gener-
ated randomly according to the standard normal dis-
tribution with mean in the diagonal of the matrix.
Each Markov model generates 5000 events and the
mixture of them contains 10000 events. This dataset
is considered to see the performance of the methods in
a small dataset.

Since the ground-truths are known we use the Rand index
[13] to compare two partitions of the alphabet set. The
rand index calculates the number of pairs of events that are
either in the same cluster in both partitions or in different
clusters in both partitions. This number is normalized to
have value the interval [0, 1] by dividing by the total number
of different pairs. The rand index measures the agreement
between two different partitions, where a value of 1 means
a perfect match, while 0 means two partitions completely
disagree to each other.

Figure 2 shows rand index (y-axis) of two algorithms when
the data size (x-axis) is varied. It is clear from the figure
that the Dzip algorithm is possible to return a perfect de-
composition in all datasets. When the data size is smaller
the performance is slightly changed but the rand index is
still high.

The performance of the Dtest algorithm is good in the
Parallel dataset although the result is not stable when the
datasize varied. However, Dtest does not work well in the
Noise and the HMM dataset especially when a lot of noises
are added. In both datasets, Dtest seems to cluster every

1www.win.tue.nl/~lamthuy/dzip.htm

events together; this experiment confirms our discussion in
section 2 that Dtest is vulnerable to noise.

7.2 Real-life data
There are three datasets in this category:

• Machine: is a message log containing about 2.7 million
of messages (more than 1700 distinct message types)
produced by different components of a photolithogra-
phy machine.

• MasterPortal: is a historical log of user behaviors in
the MasterPortal2 website. It contains about 1.7M of
events totally of 16 different types of behaviors such
as Program view, University view, Scholarship view,
Basic search, Click on ads banner and so on.

• Msnbc: is the clickstream log by the users of the MSNBC
website3. The log contains 4.6M events of 16 different
types each corresponds to a category of the website
such as frontpage, sports, news, technology, weather
and so on.

For the Machine dataset, the Dzip algorithm produced 11
clusters with three major clusters contains a lots of events.
Meanwhile, the Dtest algorithm produced 4 clusters with
one very big cluster and 3 outlier clusters each contains only
one event. The result shows that Dtest seems to cluster ev-
ery events together. Since the ground truths are unknown
we compare the compression ratios when using the decom-
position by each algorithm to compress the data. Our ob-
servation shows that the data is compressed better with the
decomposition produced by the Dzip algorithm because the
compression ratio is 2.37 on the Dzip algorithm versus 2.34
on the Dtest algorithm.

Both Dzip and Dtest produced one cluster of events for
the Msnbc and the MasterPortal datasets. Therefore, the
compression ratios of both algorithms are the same in each
dataset. Although we don’t know the ground-truths for
these datasets the result seems to be reasonable because
in the case of clickstream data, users traverse on the web
graphs and the relations between the events are inherently
induced from the connections in the web graph structure.
The Msnbc is compressed better than the MasterPortal (the
compression ratios are 1.5 and 1.2 respectively). These num-
bers also tell us that the dependency between events in the
Msnbc dataset seems to be more regular.

7.3 Running time
In section 6, we have shown that the amortized complexity

of the Dtest algorithm and the worst case complexity of
the Dzip algorithm are the same. The result promises that
the Dzip algorithm will be faster than the Dtest algorithm.
Indeed, this fact holds for the set of datasets we use in this
paper. In Figure 3 we compare Dzip and Dtest in terms of
running time. In most datasets, Dzip is about an order of
magnitude faster than the Dtest algorithm.

8. CONCLUSIONS AND FUTURE WORKS
In this paper, we proposed a compression-based method

called Dzip for the sequence independent decomposition prob-
lem. Beside being justified by a theoretical analysis, in ex-
periments with both synthetic and real-life datasets, Dzip
2www.mastersportal.eu
3www.msnbc.com
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Figure 2: Rand index measures the similarity (higher is better) between the decompositions by the algorithms
and the ground-truths. Rand index is equal to 1 if it is a perfect decomposition.

MasterPortal Msnbc Machine Parallel Noise HMM 

Dzip 28 38 131387 8 192 1 

Dtest 159 500 201385 138 25130 1 

Figure 3: Running time in seconds of two algorithms. Dzip is about an order of magnitude faster than Dtest.

was shown to be more effective than the state of the art
method based on statistical hypothesis testing. There are
various directions to extend the paper for the future works.
At the moment, we assume that each independent process
must produce a disjoint subset of events. In practice, the
case that independent processes produce overlapping sub-
set of events is not rare. Extending the work to this more
general case can be considered as an interesting future work.

9. ACKNOWLEDGEMENTS
The work is part of the project Mining Complex Patterns

in Stream (COMPASS) supported by the Netherlands Or-
ganisation for Scientific Research (NWO).

10. REFERENCES
[1] Kira Radinsky, Eric Horvitz: Mining the web to

predict future events. WSDM 2013: 255-264

[2] Julia Kiseleva, Hoang Thanh Lam, Toon Calders and
Mykola Pechenizkiy: Discovery temporal hidden
contexts in web sessions for user trail prediction
TempWeb workshop at WWW 2013.

[3] Heikki Mannila, Dmitry Rusakov: Decomposition of
event sequences into independent components. SDM
2001

[4] Thomas Cover, Joy Thomas: Elements of information
theory. Wiley and Son, second edition 2006.

[5] Peter Grünwald: The minimum description length
principle. MIT press, 2007.

[6] Hyvärinen A, Oja E. Independent component analysis:
algorithms and applications. Journal of Neural
Network 2000.

[7] Michael Mampaey, Jilles Vreeken: Summarizing
categorical data by clustering attributes. Data Min.

Knowl. Discov. 2013

[8] Rudi Cilibrasi, Paul M. B. Vitányi: Clustering by
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ABSTRACT 
A study of maritime surveillance operations revealed that visual 
analytics could enable better maritime situation analysis. For that 
purpose, we designed the Maritime Visual Analytics Prototype, 
which is detailed in this demo paper. It supports the detection of 
marine anomalies and the detailed analysis of vessels of interest 
through a series of specialized tools. First, the Analysis Set 
Manager acts as the central repository and starting point for tools 
launching. The Animated Map and Timeline enable visual 
anomaly detection related to vessel tracks using Route Ribbons 
and Close Encounter Icon visualizations added to an interactive 
geo-temporal display. The Visual Summary Cards presented in 
the Record Browser display the key vessel characteristics for 
rapid visual scanning. The Magnets Grid enables a multi-
dimensional exploration of factual vessel information, while 
temporal analysis is performed using the Multi-Timelines. This 
prototype was tested with operational maritime surveillance data 
and evaluated through user jury trials with real potential users. 
Comments from the users indicate that the visual widgets 
proposed could be valuable to their daily operations.   

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – graphical user interfaces (GUI), user-centered 
design. 

General Terms 
Management, Design, Experimentation, Security, Human Factors. 

Keywords 
Visual analytics, anomaly detection, situation analysis, maritime 
domain awareness, user jury validation. 

1. INTRODUCTION 
Maritime domain awareness is defined as “the effective 
understanding of everything on, under, related to, adjacent to or 
bordering a sea, ocean or other navigable waterway, including all 
maritime-related activities, infrastructure, people, cargo, and 

vessels and other conveyances that could impact the security, 
safety, economy, or environment” [1]. In Canada, ensuring 
coastal safety by detecting marine threats in a sea of vessel track 
data falls within the responsibility of the Coastal Marine Security 
Operation Centres (MSOC), where the staffs gather and analyze 
information, and produce specialized intelligence products to 
support operational decision makers during routine and 
contingency operations [2]. This mandate exceeds awareness and 
involves focused analysis. To build and maintain a shared 
understanding of the maritime situation is very challenging and 
can lead to significant cognitive overload. Visual Analytics (VA) 
technologies could be beneficial to that endeavor. 

In this paper, we present a study of VA applied to maritime 
domain challenges, including the requirements identified for a 
maritime VA tool suite, the Maritime Visual Analytics Prototype 
(MVAP) that we designed and implemented, and the results of the 
validation activity that followed. 

1.1 Application of Visual Analytics for 
Maritime Domain Analysis 
In this project, we conducted a detailed study investigating how 
VA can benefit maritime domain analysis. We first performed 
multiple knowledge elicitation sessions to identify important 
challenges and visual requirements related to maritime domain 
analysis. We decided to focus our research on the two following 
tasks: maritime anomaly detection and vessel of interest analysis. 
In our design, we split the visualization needs into a series of VA 
tools using a modular approach. That led to the development of 
the MVAP which is the subject of this paper. 

1.2 Validation with Target Users 
The MVAP was evaluated by real potential users from each of the 
five federal departments involved in the MSOCs and representing 
a variety of maritime security functions. A hands-on group 
training session was followed by a series of individual tasks to 
perform. The MVAP and the tools that comprise it were assessed 
using Standard Usability Scale surveys, user rankings of 
individual tools, observations and interviews. Moreover, the 
MVAP was tested with real surveillance data which contributed to 
showing the users its operational potential. 

Validation results and comments from the users indicate that the 
visual widgets proposed could indeed be valuable to their daily 
operations. This activity also generated insights useful for VA 
tool design and assessment. 
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Figure 1. This is an overview of the Maritime Visual Analytics Prototype tools for visual marine threat identification and analysis.

2. REQUIREMENTS ANALYSIS 
“The MSOCs provide comprehensive marine domain awareness 
along Canada’s coasts enabling detection, assessment, and 
response to threats that could adversely affect the safety, security, 
environment or economy of Canada. Threats include foreign 
trans-national organized crime - drug trafficking, piracy, migrant 
smuggling - emerging terrorist activity, over-fishing, and 
polluters” [2]. To do that, the MSOCs perform a 24/7 watch over 
Canada’s three oceans. Heterogeneous sources provide 
information related to the thousands of vessels that can cross their 
area of responsibility. 

After a review of previous knowledge elicitation studies from 
related DRDC research projects [3, 4], we conducted 
requirements analysis sessions with interagency civilian and 
military staff involved in the MSOCs. We were also able to 
observe duty personnel in action in their work environment. The 
domain knowledge was gathered through a mix of interviews, 
observations, and group discussions. We identified a series of 
tasks that could benefit from VA tools [5], but chose to focus our 
limited research resources on the two activities which presented 
the highest improvement potential from the VA science and 
technology: identifying anomalies related to vessel tracks and 
information, and performing a focused analysis of a situation that 
involves a vessel of interest. 

2.1 Anomaly Detection 
The MSOCs do not have enough manpower to conduct a full 
analysis of every vessel in their areas of responsibility, so they 
use triage to identify vessels that may present a threat and require 
detailed analysis. Unfortunately, vessels with anomalous 
behaviours or suspicious connections are not easily detected 

among the very large number of vessels going about normal, 
legitimate activities. 

They need the ability to recognize outliers that do not behave as 
expected as well as the ability to spot individuals who behave in a 
way similar to previously identified threats. 

2.2 Vessel of Interest Analysis 
Vessels of Interest (VOIs) are those vessels that require special 
attention. They are not declared lightly and a procedure must be 
followed. When a vessel is designated as a VOI, a number of 
people will gather information and conduct detailed analysis in 
order to make a judgment about the case. This detailed analysis 
can also lead to the identification of other potentially interesting 
individuals. 

2.3 Information to Represent 
To detect maritime anomalies and to represent what can be known 
about a VOI, three main categories of information must be 
considered [5]: 

• Geo-temporal: mainly the vessel’s track, including related data 
such as speed 

• Temporal: significant events involving the vessel 
• Factual: known information elements about the vessel, related 

people or organizations, and physical properties. 

2.4 Other Considerations 
Additionally, we must consider the constraints that come from 
working in a defence and security environment like the MSOCs. 
Frequent staff changes are expected and the time that can be 
devoted to training is very limited. Thus, the proposed tools 
should be easy to learn and provide an intuitive interface. 
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The Canadian Charter of Rights and Freedoms, and the Privacy 
Act must be taken into account when collecting, using and sharing 
information. For that reason, the data that different governmental 
agencies collect are not shared directly in a common data 
repository. Tools should allow users to import/export the data 
from/to different formats to facilitate sharing when working on a 
case with other agencies. 

3.  LITERATURE REVIEW 
3.1 Anomaly Detection 
3.1.1 Automated Detection 
In the maritime domain, many researchers attempted to detect 
anomalous vessel behaviours automatically relying on models of 
normal/abnormal vessel kinetic behaviour. 

Laxhammar [6] uses a Gaussian mixture model for maritime 
anomaly detection while Johansson and Falkman [7] use a 
Bayesian network. Spline-based trajectory clustering techniques 
were proposed by Dahlbom and Niklasson [8] to represent normal 
vessel behaviour for coastal surveillance. Rhodes et al [9, 10] 
suggest the use of a neurobiologically inspired algorithm for 
probabilistic associative learning of vessel motion. 

Riveiro et al [11, 12] opt for self-organizing maps but allow user 
involvement in the anomaly detection by providing interactive 
visualizations and a data mining module that supports the 
insertion of the user’s knowledge and experience. 

An automated approach for anomalous vessel behaviour detection 
was also researched at DRDC, employing a rule-based expert 
system which allowed an operator to express anomaly rules that 
take advantage of both kinetic and non-kinematic vessel 
properties [13]. A similar approach was also employed by Edlund 
et al [14]. 

These automated approaches produce very good results for 
suspicious patterns that were previously noticed and can be 
clearly expressed. However, they do not allow for first time 
discovery of new patterns, so a visual anomaly detection approach 
could very well complement automated systems. 

3.1.2 Visual Detection 
Extensive work can be found regarding the visual analysis of 
trajectories, but they often focus on identifying larger trends in 
the data, not in detecting outliers. 

Willems et al [15] produced ship density landscapes in which 
ships off historic routes and regular traffic lanes visually stand 
out. Vessel movement patterns can also be characterized using 
hybrid fractal/velocity signatures [16] to recognize anomalous 
activities. TripVista [17] offers spatial, temporal and multiple-
dimensional perspectives to analyze micro terrestrial traffic data 
for finding regular patterns and anomalies of traffic flows. These 
projects address several types of trajectory anomalies but ignore 
abnormal situations that can be detected using non-kinetic data. 

Most of the VA literature concerning anomaly detection is 
concerned with network security and the techniques employed are 
not easily transferable to the maritime domain where the geo-
temporal aspect is a central analysis component. 

3.2 Vessel of Interest Analysis 
Multi-dimensional visualization of aspects of the traffic trajectory 
data with parallel coordinates plot was proposed in TripVista [17] 

and [18] (adding physical ship properties). As for anomaly 
detection, the focus of current research remains on trajectory data. 
Although the geospatial trajectory of a vessel is the most salient 
signature, maritime situation assessment requires the analysis of 
more varied data such as port visit history, owner relationships 
and suspected criminal activities. 

Not focusing specifically on maritime situations, Keim [19] 
outlines the advantages of visualization for data mining 
applications and gives a long list of examples. Perer and 
Shneiderman [20] also discuss the tight link between VA and data 
mining. Although visual data mining often helps identifying 
global trends, the visual analysis of individual entities has 
received much less attention. 

4. THE MARITIME VISUAL ANALYTICS 
PROTOTYPE 
The MVAP was developed to explore the potential of VA 
techniques for visual anomaly detection and situation analysis in 
the maritime domain. 

4.1 Our Approach 
Early in our design process, we decided to adopt a modular 
approach, where each of the proposed tools would be independent 
and focus on a specific analysis perspective. We designed a series 
of concepts [21], presented them to potential users and selected 
the most promising ones to be included in MVAP. 

The map rapidly appeared as the natural choice for representing 
the vessel track information, with an important focus on 
combining the geographical and temporal aspects together. We 
added a few innovative concepts in an attempt to make some 
types of trajectory anomalies more salient. As temporal 
information is very important for pattern detection, we created a 
specialized widget that focusses on temporal patterns detection. 
Factual information exploration was divided between multi-
dimensional simultaneous exploration and visual summaries for 
quick scan and comparison. 

The strength of splitting the different functionalities across 
specialized widgets is that it avoids imposing a steep learning 
curve to a user who only needs a fraction of the MVAP 
capabilities. We expect simple single purpose tools will also 
require less training than a complex application offering all these 
features together. On the other hand, a potential drawback is that 
it may result in a fractioned analysis where the overall picture is 
hard to grasp.  

This decoupled approach also facilitates the eventual operational 
deployment of the tools by not imposing a large application to 
end users who may only be interested in one widget. An added 
benefit is to facilitate the reuse of some of the tools for other 
application domains, such as social network analysis in a counter-
insurgency context [22]. 

The prototype interface is implemented in JavaScript and runs in 
a web browser with a service oriented architecture backend. The 
following subsections describe the functionalities that each 
MVAP widget offers. Figure 1 provides an overview of all the 
MVAP tools. 

4.2 Analysis Set Manager 
The Analysis Set Manager serves as a central repository for the 
analysis sets that are built using the other tools of the MVAP. It 
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features a hierarchical tree of analysis sets listing all the vessels 
that they contain (Figure 2). With the Analysis Set Manager, the 
user can organize objects into meaningful analysis groups. For 
example, a list of vessels that need to be monitored closely could 
be managed from the Analysis Set Manager. The visual encoding 
for managing the sets of vessels mimics the use of a file browser, 
providing a familiar concept to most computer users. 

 
Figure 2. The Analysis Set Manager is the main repository 

and launching point for the other VA tools. It features a 
hierarchical display of vessel sets. Sets displayed in italic were 

generated using artificial reasoning services. 
Analysts are not expected to create all the vessels lists manually. 
Partial automation of the process is performed by taking 
advantage of artificial reasoning services to automatically create 
“smart sets” according to predefined rules. This leverages the 
previous work performed with expert systems that can detect a 
large number of anomalous situations automatically [13], 
effectively combining our interactive visualization approach with 
automated data mining. These smart sets can be regularly updated 
and are displayed in italic to differentiate them from sets resulting 
from manual selection or visual analysis. 

The Analysis Set Manager is also the launching point for the other 
VA widgets, which allow operators to identify more anomalies 
and patterns, as well as to explore the details of the reported 
anomalies from the data mining process. 

4.3 Animated Map and Timeline with Visual 
Encodings 
The use of a geographical map is central to maritime situation 
analysis. In the MVAP, this essential capability is provided by the 
Animated Map and Timeline (Figure 3), which add temporal 
animation to the map visualizations currently available in 
operational systems. It contains a geographical display with a 
timeline added below that lets the user select the active time 
interval for data display. The top part of the timeline contains an 
overview of the selected time interval and the bottom part is a 
zoomed in version. The selected interval can be dragged to 
animate the vessel tracks on the map, in order to perform 
spatiotemporal analysis 

Two innovative visual representations are integrated into the map 
display: the Close Encounter Icons and the Route Ribbons 
(Figure 4). Their purpose is to facilitate visual detection of track 
anomalies, including encounters and vessels not taking the 
shortest route to their stated destination. 

 
Figure 3. The Animated Map and Timeline offers an 

interactive display of vessels tracks where the user can select a 
time interval at the bottom of the interface and drag it to 

animate the tracks backward or forward. 

 
Figure 4. Route Ribbons and Close Encounter Icons appear 
when a vessel is selected or can be turned on for all vessels. 

Route Ribbons increase the saliency of vessel tracks following 
unexpected routes. 

A Close Encounter Icon is a square area that is centred on a 
vessel. This icon follows the vessel during its journey and other 
vessels that come near it will leave a trace within the icon as they 
cross it. Figure 5 highlights possible icon patterns that can happen 
along with their associated meanings. This icon summarizes a 
vessel’s journey and shows in a single glance whether there were 
close encounters, helping the analysts triage which tracks to 
animate for further analysis. The Route Ribbons trace a dotted 
line representing the expected route for the vessel for comparison 
against the actual track, resulting in increased saliency for 
anomalous tracks. 

The Animated Map and Timeline widget also serves as a spatio-
temporal filtering tool for creating meaningful sets of vessels to 
analyse with the other MVAP tools. 
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Figure 5. The Close Encounter Icon is a visual representation 
centered on a vessel and moving with it, where other vessels 

crossing its path leave a trace inside this square area. Here are 
a few potential examples with their associated meanings [23]. 

4.3.1 Modified Version for Handling Real 
Operational Data 
A specialized version of the Animated Map and Timeline widget 
was created to handle the large amount of tracks present in real 
data. We ingested a 40 GB operational dataset of 112 million 
position reports spanning over a year, related to 75 000 vessels. 

A benefit of creating this widget version is that it contributed to 
gaining credibility in the eyes of the target users and getting their 
attention. Real data also tested the limits of the system with 
regards to dealing with large datasets. 

A few features were added to that version, extending its 
capabilities with automatic detection of loiterers and vessel 
encounters within a selected region and time. This detection 
preprocessing and database insertion can take about two days on a 
standard personal laptop. In an operational setting, it is more 
likely that we would not process a year’s worth of tracks at once 
but rather analyze the tracks regularly as the information is 
gathered. 

4.4 Magnets Grid 
The inspiration for the Magnets Grid was the Dust&Magnets 
concept [24], which was designed to explore a multi-dimensional 
space of attributes. This VA tool favours the understanding a 
maritime situation beyond the exploration of traditional kinematic 
vessel properties. Interaction with the Magnets Grid can help 
identify trends and outliers in sets of hundreds of vessels 
according to multiple properties at once. In our demonstration 
scenario, vessels associated to a fictive suspicious country called 
“Jacardia” could be detected with the Magnets Grid using 
magnets that attracted vessels based on the number of references 
to Jacardian people and places contained in their profile. 

The canvas space is filled with dots representing individual 
vessels, called the dust. Labelled magnets corresponding to vessel 
properties can be inserted into the canvas. Clicking the shake 
button will make the dust move according to the vessels’ property 
values, as depicted in Figure 6. There is no limit to the number of 
magnets that can be used together, making this tool well fitted to 
explore multiple dimensions at once. New magnets can be created 
on the fly by selecting attributes in the vessel record. 

 
Figure 6. In Magnets Grid, the vessels are displayed as dots 

and magnets are dropped in the canvas to attract them based 
on vessel property values. The dots color and size can be 

associated to vessel properties. Here, the “Jacardian Refs” 
magnet reveals four outliers that are involved with this fictive 

suspicious country in our demonstration scenario. 
We expanded the Dust&Magnets display with attraction arrows 
around dust elements to provide a visual cue indicating the 
attraction strength of the magnets. The arrows reduce the 
attraction ambiguity when a static snapshot of the Magnets Grid is 
captured. 

We also augmented the tool with scatter plot capabilities and the 
possibility to constrain the dust movement to vertical or 
horizontal bands (or both). In Figure 7, associating the Vessel 
Type to the X-Axis will prevent the dots from leaving the bands 
to which they belong. This can enable insights about trends across 
the different categories represented by the bands. If no magnets 
are added to the canvas, associating the x-axis and y-axis to 
attributes will enable the use of Magnets Grid as a scatter plot tool 
(Figure 8). 

 
Figure 7. In Magnets Grid, the dots movement towards the 

magnets can be constrained by associating vessel properties to 
either the horizontal or vertical axis, or both. In this example, 
the vessel dots cannot leave the columns where they belong. 

79



 
Figure 8. If we remove the magnets and select properties for 
both axes in Magnets Grid, we obtain a scatterplot display. 

4.5 Visual Summary Cards and Record 
Browser 
The intent of the Visual Summary Cards is to communicate the 
key characteristics of individual vessels in a concise visual 
format. The flip side of Visual Summary Cards also provides the 
factual textual information about the vessels. Information is 
formatted so that the analyst can look for normally present or 
absent elements rather than having to read each card. When 
available, a picture of the vessel is provided for visual 
identification. The top part of the cards contains icons for the 
vessel type, flag, as well as 24h and 96h call reports status. The 
word cloud contains the ports that were previously visited. The 
two icons at the bottom of the card are the Close Encounter Icon 
and a small snapshot of the vessel’s track. 

The cards can be displayed in the Record Browser, as shown in 
Figure 9. It allows an analyst to rapidly flip through a virtual deck 
of cards, enabling a visual scan for specific information. Dragging 
a particular card to the left part of the Record Browser facilitates 
visual comparison between vessels. Cards can be tagged as 
potential VOIs and a dot will appear on the bottom slider to 
identify those that were marked. 

 
Figure 9. The Visual Summary Cards displayed in the Record 
Browser show the key vessel characteristics visually to allow 

for rapid scanning and visual comparison. 

4.6 Multi-Timelines 
The MVAP component for exploring temporal events is the 
Multi-Timelines tool (Figure 10). In this interactive visualization, 
each vessel has a horizontal timeline displaying its associated 
events. This tool is intended for closer analysis of a small number 
of vessels. The visual alignments of events along horizontal lines 
allow the visual comparison of these sequences for multiple 
vessels or even self-comparison when a vessel’s line is duplicated. 
Unlocking the timelines enable comparison of sequences of 
events that happened at different time periods. This could lead to 
the identification of patterns or outliers. 

In locked mode, dragging a timeline sideways will move all the 
other timelines synchronously. When the timelines are unlocked, 
we can drag them individually to align them on specific events 
that happened at different dates and visually compare how the 
situation evolved over time. The red line facilitates the manual 
alignment of individual timelines. Double-clicking on a specific 
event will also automatically align all the timelines to the nearest 
occurrence of this type of event in each timeline. 

 
Figure 10. Multi-Timelines allow visual comparison of 

temporal events. A vessel’s timeline can be duplicated to allow 
self-comparison and all the timelines can be unlocked to 
compare sequences of events happening at different time 

periods. 

5. VALIDATION WITH TARGET USERS 
The MVAP validation trials supported three objectives: evaluate 
the software usability, assess the potential operational value, and 
identify future improvements for the system. 

Ten months before the validation trials, we held an early planning 
session onsite with nineteen maritime security analysts to guide 
the scenario and task development for the validation activity. 
They were briefed about the MVAP and their input influenced the 
tasks and datasets used in the validation trials. 

5.1 Methodology 
We employed a ‘user jury’ methodology to assess the MVAP, 
relying on the use of questionnaires and interviews with field 
experts [25]. We did not perform a direct comparison with 
operational tools because due to the lack of resources, many of 
the analyses that are offered by the MVAP are not currently being 
performed on a daily basis and there are no operational tools 
currently in use to support them. 

Trials were conducted in groups of 3 to 5 participants in a single 
room. Each session lasted between sixty to ninety minutes and 
comprised three parts. It began with a hands-on training, followed 
by a set of tasks to be completed, and ended with participant 
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assessment acquisition through questionnaires and interviews. 
During the whole process, observers recorded relevant 
observations about the participants’ actions, questions, comments, 
errors and unanticipated strategies. 

The training and scenario tasks relied on a combination of real 
operational data that was ingested into the MVAP and fictive 
scenario data where the information was not available. 

5.1.1 Hands-on Training 
During the training part, a MVAP expert explained the purpose 
and concepts of the widgets, one at the time. The presenter 
performed relevant operations on a large display screen, while the 
participants followed along on their individual stations. 

Participants were trained for as many operations as possible in a 
short time period of 30 minutes. Some widget operations were 
only performed by the presenter and not carried out by the 
participants due to limited training time. The widgets were 
presented in the following order: Analysis Set Manager, Map and 
Timeline, Record Browser, Magnets Grid, Multi-Timelines, and 
modified Map and Timeline using real operational data. 

5.1.2 Scenario-Based Exercise 
We gave participants a scenario worksheet that included a 
summary of the assigned exercise and a set of six questions to be 
answered using the skills that they had learned during the MVAP 
training. They had 15 minutes to complete the challenge tasks. 
Due to timing constraints, no tasks in the exercise involved the 
Multi-Timelines. 

First, the users manipulated the specialized version of the 
Animated Map and Timeline to request all tracks on a certain date 
in a specified area. Then, they had to find and export all the 
vessels that contained specific keyword to an analysis set in the 
main MVAP application. They animated the tracks in the Map 
and Timeline to estimate the expected ports of arrival of these 
vessels on the map. After that, the Magnets Grid was used to 
characterize the ships using a combination of construction 
properties such as build year and tonnage. Finally, the analysis 
concluded with a scan of the Visual Summary Cards to identify 
vessels with particular characteristics such as a specific flag. 

5.1.3 Questionnaires and Interviews 
After the tasks were completed, we handed participants the 
usability survey and a ranking sheet asking them to rank the 
usefulness of individual widgets and to write any comments they 
may have about them. 

The sessions concluded with a hot wash group discussion where 
all participants were invited to share their thoughts and voice any 
questions they had about the MVAP. 

5.2 Assessment Metrics 
Three types of metrics were collected to assess the MVAP 
prototype. First, trial participants made an overall subjective 
assessment of the perceived effectiveness, efficiency, correctness, 
satisfaction, and trust of the MVAP features using the 
internationally recognized System Usability Scale (SUS) 
questionnaire [26, 27]. 

Then, they gave an individual rating to each widget according to 
their perception of the potential usefulness of each tool. The 
proposed scale included 3 values: “Not Useful (0)”, “Possibly 

Useful (1)” and “Very Useful (2)”. They were also invited to add 
comments about each widget. 

Observers took notes to document all the observations, comments 
and questions that were expressed by participants at any time 
during the whole process. They also recorded the errors the 
participants made as well as the unanticipated strategies that they 
exhibited while working with the MVAP. These comments and 
observations provided the basis for an informal but insightful 
assessment. 

5.3 Participants Selection 
Sixteen maritime security specialists and analysts participated in 
the trials held on-site at the Halifax MSOC facility on November 
13th and 14th, 2013. The positions of the participants included 
analysts, intelligence officers, Navy lieutenants, a watch officer, a 
coordinator, a maritime picture manager and maritime 
information management systems developers. The participants 
were very knowledgeable about the maritime domain, but were 
not familiar with advanced interactive visualizations. There was at 
least one representative from each of the five federal partners 
involved in the Canadian MSOCs [2]: 

• Canada Border Services Agency; 
• Canadian Coast Guard; 
• Department of National Defence; 
• Royal Canadian Mounted Police; and 
• Transport Canada 

6. TRIAL RESULTS 
6.1 Overall MVAP Evaluation 
Fourteen of the sixteen participants filled the System Usability 
Scale (SUS) questionnaire. Globally, the MVAP review was very 
positive (Figure 11). It obtained an average SUS score of 76, 
which means that the MVAP scored better than 75% of new 
software releases (using statistics from [26]). This is considered 
“Excellent” according to [28]. Observers noted that some 
participants were even trying features without waiting for the 
training, hinting that the user interface was intuitive and easy to 
understand. 

 
Figure 11. System Usability Score obtained from 14 

participants for the overall MVAP evaluation. 
Participants were very enthusiastic about the MVAP and 
indicated that they would definitely use it if it was made available 
to them. Their verbal and written comments suggested that it 
offered significant improvements over the current MSOC tools. 
Many participants were already thinking ahead about how the 
new features offered by MVAP could be integrated into the 
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MSOC. They provided insightful suggestions for extending the 
prototype’s capabilities and adapting it to their specific 
operational context requirements. 

6.2 Individual MVAP Widget Assessments 
The five MVAP widgets have a high expected operational 
usefulness as a majority of participants ranking them as “Very 
useful” (Figure 12). The average rankings ranged between 1.5 and 
1.9. One participant had to leave and did not fill this form. 

 
Figure 12. Usefulness rankings for individual widgets: 15 

participants assessed each widget individually according to 
the expected usefulness that they perceived for their own 

operational work. 

6.2.1 Analysis Set Manager 
The Analysis Set Manager was among the top ranked widgets 
with an average of 1.9. Participants understood its role in 
structuring the analysis data and were quickly able to create 
analysis sets with the widget. They commented that the widget 
was clear and easy to understand, and would be great for grouping 
certain datasets. They recommended adding a number of import 
and export data formats to increase the analysis sets sharing 
capability between analysts from different departments or with 
other systems. 

6.2.2 Animated Map and Timeline 
The Animated Map and Timeline was also top ranked with a 1.9 
average score. It was the widget that generated the most 
comments and some participants called it “the best app of all”. 
Being able to visualize the time evolution of vessel tracks was one 
of the most esteemed capabilities. The search feature for close 
encounters was greatly valued and they stated that it was not 
possible to do this with their current tools. Participants were 
especially interested in the modified widget version that used their 
operational data. 

Although moving time back and forth was very popular, the time 
slider interaction was difficult to master rapidly and led to many 
manipulation errors. To improve it, they suggested adding a time 
interval selection field to enter the initial settings. 

Not much time was spent on Close Encounter Icons and the 
patterns created by real vessel tracks were much harder to 
interpret than Figure 5 would suggest. It is possible that after a 
longer exposure the patterns in the icons may become familiar. 
However, the MSOC environment where the turn-over in 
manpower is high makes this visual representation less desirable. 
Regarding the Route Ribbons, a similar visual representation is 
now part of their recognized maritime picture and it appears to be 
effective. 

The comments highlighted how the interactive geo-temporal 
visualization could help making sense of a developing situation 
over time. Potential uses were suggested for marine security and 
regulation operations such as detecting polluters, determining 
baseline activities through pattern of life analysis, and helping 
communicating analysis results more clearly in briefings. 

6.2.3 Magnets Grid 
Although, it scored an average ranking of 1.7, Magnets Grid was 
very popular among participants, many of them calling it 
“awesome”. This was partly due to its high novelty: there is no 
comparable visualization tool at the MSOC that enables 
exploration of these types of vessel characteristics visually. 

The visualization looked complex at first but observations of self-
learning from participants indicated that it was surprisingly easy 
to understand. In a very short time, the participants were very 
proficient with the Magnets Grid and had no major difficulties in 
completing the related tasks. The attraction arrows concept was 
not clear to at least one user. Another participant pointed out a 
weakness that appears in the presence of a very strong outlier, 
allowing it to dominate the canvas and force the others dots into a 
tight cluster. 

Overall, participants thought the concept was very interesting, but 
some did not see how it would be useful to them because they did 
not expect to have access to a rich enough array of operationally 
relevant data to make the Magnet Grid effective. 

Other participants suggested several ways to use the Magnets 
Grid for maritime security operations, such as comparing vessels, 
multi-parameter searching and fuzzy analysis. They even 
proposed new types of calculated attributes for magnets that 
would turn some geographic properties of vessel tracks into data 
usable with Magnets Grid, such as boundary crossing detections. 

6.2.4 Visual Summary Cards and Record Browser 
The Visual Summary Cards got an average ranking of 1.7. 
Participants thought it was useful and easy to understand but 
expressed concerns about the availability of the data used in the 
cards display. This is very important because the usefulness of 
this visualization is highly dependent on having detailed dynamic 
information about vessels. Sharing watch lists was proposed as an 
example of potential operational application. 

Some participants wished the card’s layout was user configurable 
so they could tailor it to their analysis needs. A comment was 
made about a similar tool being used already, although no details 
were provided regarding its usefulness or adoption rate among 
target users. A participant wanted to be able to look at both sides 
of the cards simultaneously. 

6.2.5 Multi-Timelines 
The Multi-Timeline scored lower than all the other widgets, with 
an average of 1.5. It is also the only tool that received a “Not 
Useful” rating. Participants understood that the widget’s purpose 
was to analyse temporal patterns, but they explained that this kind 
of analysis is not frequent in their work. They still proposed 
potential ways to use it by adding geographically triggered events 
such as boundary crossings or close encounters detection. They 
valued the ability to unlock and shift temporal lines 
independently. 

The Multi-Timelines widget was taught at the end of the training 
session, very often with little or no time for the user to really try it 
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and was not covered in the challenge tasks. This could partially 
explain the low ratings from the users. 

7. LESSONS LEARNED AND DISCUSSION 
7.1 Modular Prototype 
Separating the visualization requirements identified into a suite of 
smaller widgets resulted in a modular prototype. This modular 
approach gives us the flexibility to provide interested users with 
only the features that they want without requiring them to adopt a 
complex application framework. 

Focussing on individual widgets allowed us to concentrate on the 
different aspects of the visual analysis requirements and to assess 
the effectiveness of the visual representations and interactions 
independently for each widget. An added benefit is to facilitate 
widgets reuse for other application domains (see section 8.4). 

7.2 Importance of a Working Prototype in 
Visual Analytics 
The ease with which trial participants understood the Magnets 
Grid widget was very surprising to us. Much earlier in this 
project, when we first explained the Magnets Grid concept to 
other maritime specialists in a presentation, they did not grasp its 
purpose and had difficulty envisioning its use. We thought this 
tool would require very detailed training and expected many 
participants to fail the related tasks. 

This experience highlights the importance of showing a working 
prototype using realistic data to target users and not relying solely 
on their perception of a paper design. 

7.3 Real Data Matters for Credibility 
Using fake but realistic data helped users understand the purpose 
of the MVAP when they followed the training. However, we 
noticed a significant increase in the participants’ attention when 
we moved to the modified Map and Timeline widget that uses 
their data. 

Although real data was not available for all the features that we 
wanted to demonstrate, showing at least a part of the MVAP 
capabilities using real operational data was sufficient to prove that 
the prototype was not only nice research software, but had the 
potential to become an operational tool. Because we went through 
the development required to adapt our prototype, we were 
prepared to address their concerns about the MVAP being able to 
handle their large datasets. 

At the other end of the spectrum, the Multi-Timelines was not 
showcased in the challenged tasks and users did not really get a 
chance to experience it with meaningful data. We think this is 
partly why it got a lower rating than all the other widgets. 

7.4 Other Application Domains 
A few participants’ comments suggested that the MVAP could be 
useful beyond the MSOC context. By focusing on the analytic 
tasks to perform rather than the specifics of vessels information, 
we designed the widgets in a very generic fashion, expecting 
some to be used in a non-maritime context. 

The adaptation of the MVAP widget to the social network 
analysis in a counter-insurgency context demonstrated the generic 
property of the visual analysis concepts proposed [29]. It should 
be noted that moving to a new application domain still requires 

development work to ingest the different data format and 
modifications to the visual interface, even though the basic 
concepts are the same. Notably, the Visual Summary Cards 
layouts need to be tailored for each type of analysis entity. 

8. CONCLUSION 
A study of maritime domain analysis performed at the MSOCs 
revealed that VA has the potential to enable better detection and 
analysis of marine threats. After identifying requirements related 
to visual detection of anomalous vessel behaviour and vessel of 
interest analysis, we designed the Maritime Visual Analytics 
Prototype using a modular approach. The capabilities of the 
MVAP are provided by a series of individual specialized visual 
analysis tools, leveraging both kinetic vessel track data and non-
kinetic vessel information. 

The Analysis Set Manager is the launching point for the other 
widgets and offers a hierarchical presentation of the vessel sets to 
analyse. The Animated Map and Timeline widget contains the 
geographical display that is central to the analysis and allows 
users to animate vessel tracks interactively while providing the 
Close Encounter Icons and Route Ribbons visual representation to 
highlight potential anomalous vessel activities. Using the Magnets 
Grid, factual information about vessels can be explored to detect 
trends and outliers across multiple dimensions simultaneously. 
The key characteristics of individual vessels appear in Visual 
Summary Cards. The Record Browser enables a quick scan of a 
vessel cards deck, as well as the visual comparison between cards 
for specific visual cues. Finally the Multi-Timelines widget 
provides an interactive interface to analyse and compare 
sequences of temporal events related to vessels. 

Sixteen maritime security analysts and specialists assessed the 
potential for operational deployment of the MVAP employing a 
user jury methodology. They went through a hands-on training, a 
set of tasks to perform individually and filled out surveys about 
the tools.  

Based on the positive validation trials results, we recommend that 
the MVAP be made available to MSOC developers so they can 
turn it into an operational tool. 
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ABSTRACT
Interactive data mining can be a powerful tool for data
analysis. But in this short opinion piece I argue that this
power comes with new pitfalls that can undermine the value
of interactive mining, if not properly addressed. Most notably,
there is a serious risk that the user of powerful interactive
data mining tools will only find the results she was expecting.
The purpose of this piece is to raise awareness of this potential
issue, stimulate discussion on it, and hopefully give rise to
new research directions in addressing it.
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1. INTRODUCTION
Traditionally, the KDD process was presented as a wa-

terfall, going from pre-processing to data mining to post-
processing (solid lines in Figure 1). This—of course—has
never been true, and more modern models of data mining,
such as Shearer’s CRISP-DM model [12], reflect that. Data
analysis is an iterative process: the user prepares the data,
selects analysis methods and their parameters, runs the meth-
ods, studies the outcome, and returns to any of the earlier
steps, possibly preparing the data differently, or using differ-
ent analysis method or different parameters (dashed lines in
Figure 1).

But this iterative process is arduous and each step that
needs to be repeated can take a significant amount of time.
To help with this is what the interactive data mining is
for: to allow the user to pinpoint the analysis method to
the interesting results without the time-consuming iteration.
Done well, interactive data mining methods can be extremely
powerful, giving the user unprecedented machinery to better
understand her data. But with great power comes great
responsibility, as the saying goes. By allowing the user to
control the data mining process in (near) real time, interactive
data mining systems posses the risk of undermining the very
promise of data mining: discovering new and unexpected
knowledge.

∗With apologies to Edsger W. Dijkstra

Pre-processingInput data

Data mining

Post-processing Knowledge

Figure 1: The iterative KDD process

2. THE PROBLEM
The goal of data mining, in the words of one textbook, is

[T]o find unsuspected relationships and to sum-
marize the data in novel ways that are both un-
derstandable and useful to the data owner. [4]

Data mining community has always been good at inventing
novel ways to mine the data, but has perhaps struggled more
with the understandability and usefulness parts. It is these
two areas that interactive data mining tries to improve by let-
ting the user to tell the algorithm, during the mining process,
what she finds useful and understandable. But doing so, it
threatens a very important aspect of data mining mentioned
in the above quote: the results should be unsuspected.

The user using the interactive data mining method is
(hopefully) familiar with the data and what it represents.
Consequently, the user has some prior ideas what the poten-
tial results could be, and what kind of a result would be a
useful result in this domain. But these prior ideas might—
indeed, I argue they will—make the user steer the algorithm
towards the kind of results that she a priori considered useful
and interesting, and never find the kind of results she did not
expect to find. This can make the interactive data mining,
intended to be exploratory by nature, a confirmatory data
analysis technique—and not necessarily very good method
at that, even.

To give a more concrete example, consider an interactive
data mining algorithm that presents the user with partial
results in an anytime fashion and lets her to guide the search
with feedback such as “more like this” or “less like this.”

85



Contemporary interactive data mining methods might not
quite achieve this level of interaction yet, but it is clear that
it would be desirable if they would. It should be obvious,
however, how the user can, possibly unintentionally, use this
feedback mechanism in such a way that the algorithm only
returns results that she was expecting.

3. IS IT A (NEW) PROBLEM AT ALL?
Is this a real problem? Is it not a far-fetched idea that the

user would have on her mind the exact results the mining
algorithm will find? It indeed is, but it is important to note
that this problem appears as soon as the user has even a
vague a priori idea on what would be a useful result from
the algorithm. And for a user with only a faint idea on
what could be useful, what is the purpose of interactive
data mining, what is its added value? The potential lose
of surprising results is the price to pay for the power of
interaction, the Jekyll and Hyde of interactive data mining.

But has this problem not been part of data mining all
the time? As already discussed, the process of knowledge
discovery is iterative and the user can repeat the steps trying
to extract more understandable and useful results, potentially
removing the more surprising results while doing so. But
interactive data mining tools can emphasize this problem
significantly by giving the user a faster access to the mining
process; indeed, interactive, rather than iterative, access.
Again, the problem lies in the heart of interactive data mining:
the power that interactive data mining gives to the user over
the iterative data mining is exactly the same power that lets
the user to only find the unsurprising results.

The users, one could argue, would not intentionally avoid
the unsuspected results. But oftentimes, it is hard to ap-
preciate such results in the first glance. The results, being
unsuspected, might look like noise or random occurrences as
they do not fit into our thinking of the data. They might
require us to update our understanding of the data, possibly
running more experiments, before we can appreciate them,
all of which makes the process significantly less interactive.
Yet, it is precisely the change in understanding the data
these results require that makes them so valuable for the
mining process.

A related problem in statistics and machine learning is
that of over-fitting. By steering the data mining process
away from unsuspected results, the user is effectively over-
fitting the results into her prior assumptions. But this kind
of over-fitting is much harder to address than the more
common one. The final arbitrator for the quality of a machine-
learning algorithm is its predictive power. But data mining is
descriptive, rather than predictive, and in many cases, there
is no clear prediction stemming from the results. There is
no objective quality measure, either, as here the user is the
arbitrator of the quality.

4. POSSIBLE SOLUTIONS
Arguably the simplest solution is user education. The

power to interact with the algorithm is vested in the user,
and she should be taught how to use this power. Unfortu-
nately, education alone cannot solve all the problems. The
risk of missing important but unsuspected results exists
whenever the user is allowed to interact with the algorithm,
any education notwithstanding, and if this power is removed
from the user, there is not much interactive data mining left.

Another simple approach is to restrict the power of the
interaction, keeping the situation closer to status quo. It
should go without saying that this approach is sub-optimal.

The potential for data mining algorithms, and their users
alike, to concentrate on “wrong” results has existed all the
time. Significant amount of data mining research is devoted
to testing whether a specific result is significant with respect
to some null hypothesis (e.g. [2, 3,8,9,11]) or even with re-
spect to user’s prior knowledge (e.g. [1,5,10]), to say nothing
about the vast body of statistical literature on measuring
the statistical significance. In principle, the approach these
papers take can be used to steer the user and the algorithm
away from expected results: encode the users prior knowledge
in the null hypothesis and discard results that are not sig-
nificant under this null hypothesis (and interactively update
the null hypothesis when new results are obtained).

While the general approach of using significance testing is
very appealing, it is not clear at all whether it can be used
to actually alleviate the problem in the interactive setting.
First, the significance testing must be instantaneous—or at
least fast enough to be used interactively. Some methods, for
example the maximum entropy methods, should be able to
pass this hurdle, while others, such as permutation test style
swap randomization, most probably will not. Second, the user
should be able to communicate her a priori assumptions to
the method so that they can be build in to the null hypothesis.
Given that even a vague prior belief can have a negative effect,
this might be too tall an order. It could be circumvented to
some extend by simply relying on the interactive nature of
the algorithm: updating the null hypothesis based on user’s
interaction with the algorithm and her reactions to the new
results could reveal enough of her latent a priori assumptions
for the method to work.

The biggest hurdle for this method, however, is in its very
nature: significance testing is designed to spot insignificant
results, but it does not, per se, help at finding new significant
results. For example Mampaey et al.’s method [10] rely on
clever algorithms to actually find the patterns. Should such
algorithm be endowed with “more like this/less like this” kind
of functionality, there would still be nothing stopping the user
from steering the algorithm away from unsuspected results. It
could well happen that the user would find almost nothing of
significance: her own actions would guide the algorithm away
from the unsuspected results, while the significance testing
would deem almost all of the remaining results redundant or
insignificant with respect to the prior knowledge.

In fact, it might well be that there is no (computationally
efficient) solution to the problem, at least not unless we place
strong assumptions on the users’ behavior. In the statistical
query model of Kearns [7], the user asks questions about the
expected value of a predicate over some (finite) distribution.
The algorithm, called oracle, does not know the distribution,
but has access to a sample of size n from it. The algorithm’s
task is to give valid answers, that is, answers that do not
deviate too much from the true expectation, based only on
the sample. In their recent paper, Hardt and Ullman [6]
showed that there is no computationally efficient algorithm
that can give valid answers to n3+o(1) adaptive statistical
queries assuming one-way functions exist1.

1A one-way function is, informally, a function which is easy
to compute for any input, but hard to invert given an image
of a random input. Their existence is a standard assumption
in much of modern cryptography.
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The crux in Hardt and Ullman’s result is the adaptivity,
as giving valid answers to even exponential number of non-
adaptive statistical queries is easy. We can interpret the result
in two ways: On one hand, it at least shows that adaptive
queries are significantly harder to answer correctly than non-
adaptive ones. On the other hand, we can interpret the
result to tell even more about the computational limitations
of interactive (and iterative, for that matter) data analysis
systems: that it is impossible to prove that our results are
even correct, to say nothing of surprising, assuming that the
user can ask sufficiently many adaptive questions.

5. TESTS
The final, and perhaps the most important, piece on ad-

dressing the problem is testing it. Without testing, we do
not know if the problem even exists, nor can we assess the
effects of proposed solutions. Developing tests to measure
if the interaction makes the users to miss unexpected re-
sults is, unfortunately, not easy. It does not seem likely
that it could be tested without involving humans to act as
users. A potential test could have two groups of users, a
test group using the interactive algorithm, and a control
group using non-interactive algorithm. Their findings would
then be evaluated to measure whether the test group missed
results the control group found, or vice versa. But even this
seemingly simple test setup requires many design decisions
to be made—where are the test subjects found, what are
the group sizes, how can it be ensured that the test is fair,
and how are the results interpreted—and traditionally data
miners have not been the ones with best knowledge about
and keenest interest on human experiments. Luckily, this is
a problem that should be very easy to solve by collaborating
with experts.

6. CONCLUDING REMARKS AND
CALL FOR ACTIONS

Interactive data mining is a powerful form of data analysis
with the potential of becoming the standard format of data
mining. But it comes with new pitfalls that need to be taken
into account when new interactive data mining methods
are developed and analyzed, lest the results become void
of unexpectedness. The community should, therefore, start
addressing the problem of finding only expected results: we
need methods to test the seriousness of the problem and the
effects of the attempts to alleviate it; we need general frame-
works to help avoiding the problem; and we need interactive
algorithms that try to steer the user away from discovering
only the expected results. But above all, we need to realize
that this is a potential problem and start thinking about it.
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ABSTRACT
Comparative dependency network learning is a growing field
of research, especially in systems biology. Domain scientists
would like to discover patterns of variable dependency that
are conserved across conditions or discover pathways that
are disrupted due to disease. In machine learning, multitask
graphical structure learning algorithms have been developed
to help solve this problem by learning network models from
multiple related datasets. These algorithms typically have
regularization hyper-parameters that have the effect of re-
ducing the number of spurious edges learned and the num-
ber of spurious differences learned. We propose a mecha-
nism to allow the end-user to control these regularization
hyper-parameters in real-time to interactively explore the
huge space of potential dependency network solutions. This
is a critical element of a visualization system that enables
domain scientists to discover interesting patterns in mul-
tivariate data. Yet, this is a computationally challenging
endeavor as complex models must be learned in real-time
and, additionally the number of differences learned in each
network and the number of differences between them must
be translated by the machine learning algorithm into the
correct change in the setting of the hyper-parameters. This
paper introduces a general framework for interactively ex-
ploring the similarities and differences among a set of depen-
dency networks and demonstrates our work-in-progress on a
specific implementation for multiple Bayesian networks.

1. INTRODUCTION
Probabilistic graphical models encode patterns of depen-

dency among variables in multivariate data [11]. Attention
is turning to the problem of comparative network analy-
sis; that is, identifying dependencies that are conserved or
different among related sets of data. In machine learning,
multitask graph learning algorithms have been developed to
address this problem [17, 4]. Multiple graphs are learned
simultaneously, producing models that are similar except
where the data strongly supports differences, easing compar-
ison (see example in Figure 1). The results of these learning
algorithms are multiple graphical models, requiring visual-
ization software to help the user understand the results.

Multitask graph structure learning is a promising direc-
tion for knowledge discovery in many scientific domains [25,
16, 5, 19]. However, there remain issues of practical con-
cern; namely, the exploration of the solution space for dif-
ferent settings of hyper-parameters. The solution space in-
cludes many graph structures that fit the data nearly equally
well, but the learned solutions vary based on the choice of

hyper-parameters given to the learning algorithm. Mul-
titask graph structure learning algorithms typically have
two hyper-parameters, one that affects the number of edges
learned (sparsity) and the other that controls the strength of
transfer bias (how similar the graphs will be to each other).
Machine learning typically treats these hyper-parameters as
nuisance parameters that must be tuned to learn an opti-
mal model [14, 13, 24, 15, 17]. Yet, to the end user, all
learned models — no matter the choice of hyper-parameters
— are good fits to the data. There is a natural tradeoff
between sensitivity and specificity in machine learning al-
gorithms governed by the hyper-parameters. Domain sci-
entists would like to be able to vary the level of confidence
in learned models to see which are the highest confidence
edges and/or differences to explore all potential dependency
patterns in the data.

Naively, exploration of the solution space is achieved by
performing a grid search over hyper-parameter settings and
then presenting each of these learned graphs to the end user.
Yet, this grid search is not an ideal approach. To illustrate
the problem of grid search, we take a look at example results
from a neuroimaging study. Using an existing multitask
graph learning algorithm [4], we assign the sparsity hyper-
parameter to 10 values evenly spaced in the range [0.1, 1] and
we assign the transfer hyper-parameter to 11 values evenly
spaced in the range [0, 1]. All 110 combinations of sparsity
and transfer settings were run through a multitask algorithm
and the solutions were displayed to a domain expert who
found which solution was most interesting. Taking a broader
look at the results from all 110 settings of these parameters,
Figure 2a summarizes the number of edges learned in the
networks for all of the values in the grid. We can see from
this that if the sparsity setting is too high, then no edges are
learned in the graphs. Yet, if the sparsity parameter is too
small, then all variables are dependent on each other and
this gives little new information to the end-user. Figure 2b
shows the number of edges that are different between the two
learned networks. We see that for many settings of transfer
and sparsity there are many solutions that are uninteresting
because there are no differences. Another frustration with
this grid search is that the number of edges or differences
learned does not change linearly with evenly-spaced steps in
parameter space. Tuning the hyper-parameters over a coarse
grid like this could easily miss the optimal hyper-parameter
setting.

After noticing that the most interesting results are lo-
cated within a narrow range of hyper-parameter settings,
we can re-run the multitask network learning algorithm for
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(a) Independently learned graphs

(b) Graphs learned with some transfer

Figure 1: Example of a sub-graph learned from neuroimaging data. The nodes in the graph are regions of the brain. Edges
indicate a direct dependent relationship in functional activity as modeled by a multinomial distribution; i.e. an excitatory or
inhibitory pathway between brain regions. When the graphs are learned independently (a), the connections are different. If
this were the only result given to the domain scientist, we might conclude that the Amygdala has a regulating effect on the
pathway between the Hippocampus and ParaHippocampus in one group of subjects, but not in the other group. However,
with even a little bit of transfer bias encouraging them to be similar (b), the differences disappear, suggesting low confidence
that this difference is real. This is a small sub-graph of a much larger graph. Higher confidence differences in the larger graph
could still remain at this low value of the transfer hyper-parameter.

new values of hyper-parameters. As an example, we “zoom
in” on the range [0.5, 0.6] for the sparsity parameter and
the range [0, 0.1] for the transfer parameter. The algorithm
is run with another 100 combinations of values for hyper-
parameters evenly spaced in this new range. Figure 2c gives
the number of individual edges learned in each networks
while Figure 2d displays the number of differences between
the two networks. Here we see that the numbers of edges
and differences learned change smoothly in this local region
of hyper-parameter space.

The above example demonstrates key limitations of ex-
isting exploratory approaches in comparative dependency
networks, which we address with our interactive approach.
First, instead of changing the hyper-parameters, we must
think about how the results will change. In this case, the end
user thinks about seeing more or fewer edges or differences
(assuming that fewer edges are higher confidence edges, etc).
Therefore, we need a computational model that translates
the human desires (number of edges and differences) into
the domain of the hyper-parameters of the machine learn-
ing algorithm. Second, the end user needs to be able to
get fine-grained results in realtime to effectively explore the

space of solutions that are of interest. Thus, an effective
interactive exploration of dependencies must translate hu-
man desire into machine learning objectives and update in
realtime in response to user feedback.

This paper introduces an interactive machine learning al-
gorithm for multitask graphical models as part of ongoing
research into creating an interactive data exploration visu-
alization system (pictured in Figure 3). A single setting of
the hyper-parameters does not give the full picture that do-
main scientists want to see. Therefore, we propose a graph-
ical structure learning algorithm that allows the user to in-
teractively adjust the number of edges and the number of
differences learned between graphs. As the user makes se-
lections about increasing/decreasing the number of edges or
the number of differences between graphs, we estimate the
necessary change in the hyper-parameter values and re-learn
the networks, displaying the results and allowing further in-
teraction. This approach gives the user an exploration of the
solution space directly, rather than having to guess pairs of
values for hyper-parameters. Essentially, we are giving the
user the ability to explore fine-grained steps in the solu-
tion space, and making the appropriate steps in the hyper-
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Figure 2: Neuroimaging study: Summary statistics about learned network models for a course (a,b) and fine (c,d) grid of
values of sparsity and transfer hyper-parameters.

parameters to achieve that result, rather than using a typical
grid search in hyper-parameter space.

2. RELATED WORK
To interactively explore graphical models, we need to pro-

vide a means to adjust parameters of interest to the user
and display the resulting graphs. Display of the graphs is
handled through the Cytoscape software that is popular in
bioinformatics [23]. The plugin interface allows us to cus-
tomize the display for comparison of multiple graphs (see
Figure 3). We incorporate sliders that allow a user to mod-
ify the sparsity and degree of transfer among networks. Pre-
viously, in our implementation, these sliders simply looked
up the pre-computed graphs learned from a list of hyper-
parameter values [20]. The user did not have any control
over the granularity of the slider, and furthermore, chang-
ing a hyper-parameter value may not always have the desired
effect (for example, on sparse graphs, even a small amount
of transfer will cause the graphs to be identical). Therefore,
we propose to provide more intuitive controls to the user,
allowing them to change the number of edges or the number
of similarities directly.

The idea of interactive parameter search is inspired by
work in supervised learning models that show that with hu-
man interaction, the optimal parameter settings are found
faster [1] and gives the user control over the objective func-
tion [9]. As in these papers, to achieve this interactive explo-
ration in multitask graph structure learning, we must be able
to estimate the values of hyper-parameters that will produce
the desired change in the solution space. We achieve this by
calculating the gradient of the solution with respect to the
hyper-parameters and then taking a step in the direction
of the gradient to produce a new solution that meets the
requirements of the user.

In graph structure learning literature, much research has
gone into optimizing the selection of the sparsity parameter
[14, 13] without a clear resolution to the problem. Tradi-
tionally, the hyper-parameters are tuned through trial and
error after examining the learned graphs [4] or through a
computationally expensive grid search that optimizes with
respect to holdout data [24, 15, 17, 19]. Graph structure
learning is an unsupervised learning domain and so there
may not be an optimal parameter setting. Even using the
oracle value of hyper-parameters does not guarantee opti-
mal performance [15], instead that paper recommends us-
ing known non-interactions to gauge the optimal level of

sparsity. Selecting the ideal setting of transfer parameters
has received less attention, with cross-validation being the
preferred method [17, 19] and subjective human-selection
being another choice [4]. Cross-validation selects the best
model to match the empirical distribution; yet, distribution
matching is not always the primary goal for using transfer
learning, and therefore cross-validation will not give optimal
results. Giving the user the ability to explore the solution
space is even more important in unsupervised learning. The
user may have desires about learned models that are not ex-
pressible until the learned models are seen [3]. Furthermore,
allowing a user to give feedback about the solutions is more
intuitive than asking the user to adjust hyper-parameters in
the hopes that the adjustments will have the desired effect.

3. FRAMEWORK OF USER INTERACTION
We formalize the general problem of learning multiple

graphical model structures and describe a method for in-
cluding user input in response to learned models.

3.1 Problem Formulation
A graphical model is a joint probability distribution of a

random vector X = [x1, x2, . . . , xp] that can be represented
compactly as factors of local structure, P (X) =

∏p
i=1 f(xi,ne(xi)),

where the set of neighbors of each node, ne(xi), is some sub-
set of variables. The elements of vector X = [x1, x2, . . . , xp]
are random variables represented in the graphical model as
vertices (or nodes) as the set V . If xp ∈ ne(xq), then there
is said to be a direct dependency between these two vari-
ables which is represented with an edge epq. The set of all
edges is called E. In many cases, the graph structure itself
G = {V,E} is of particular interest.

In the problem of multitask graph structure learning, we
have several sets of data, Dk for k ∈ {1, 2, . . . ,K}, from
which we learn several graphs G = {G1, . . . , GK}. The
multitask structure learning algorithm relies on two hyper-
parameters, which we call Λ = [λ1, λ2], where generally
0 < λ1 ≤ 1 controls the sparsity and 0 ≤ λ2 ≤ 1 controls the
strength of transfer. We treat the graph structures G and Λ
as unknowns to be learned. For a fixed Λ, the graphs can
be learned from the data with existing algorithms. The user
will interactively learn Λ by giving feedback to the learning
algorithm about the number of edges and edge similarities
that they would like to see in the learned graphs.

In this paper, we represent the set of edges in all of the K
graphs with G, an m×K binary matrix, where m is the total
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Figure 3: Interactive multi-graph visualization. Our system consists of the following components: a visual display of multiple
learned graphs, user controls to increase/decrease the number of edges in each graph, user controls to increase/decrease the
degree of similarity among pairs of graphs, efficient update of learned graphs in response to user controls.

number of potential edges (for directed models m = p(p−1)
and for undirected models m = p(p− 1)/2). Each entry Gik
represents the presence (Gik = 1) or absence (Gik = 0) of
the edge i in task k. In a slight abuse of notation, we use Gik
to refer to edge i in task k, while Gk refers to all potential
edges in task k. The structure of the learned graphs depends
on the training data and the hyper-parameters Λ = [λ1, λ2].
While looking at a given solution, a human end-user may
desire to see a solution with more (or fewer) edges in some
Gk or with more (or fewer) edge differences between some
Gi and Gj for tasks i and j. These desires are encoded in
a binary matrix S that correspond to the edge matrix G
(explained in further detail later).

3.2 Sketch of Interactive Approach
Our interactive approach alternates between learning graph

structure, G = f(D,Λ), and learning hyper-parameters, Λ =
g(D,G,S), based on feedback S from a human who is look-
ing at a visualization of the learned graphs G. To initialize
the interaction, we learn a set of graphs from given datasets.
These graphs can be learned with transfer bias (λ2 = 0) ini-
tially with an arbitrary value for the sparsity (e.g. λ1 = 0.5).
These graphs will be displayed in Cytoscape, along with in-
formation in the Control Panel about the number of edges
learned in each graph and the number of differences in edges
among the tasks. The user can then adjust the desired num-
ber of edges learned (up or down) or adjust the number of
differences among pairs of tasks. Based on the user input, S,
we compute the necessary Λ to achieve the requested change
(details in the next section). Using the computed Λ, we re-
learn the graphs, G, and update the visualization, allowing
the user to further interact until satisfied with the solution.

3.3 Representation of User Feedback
When a user clicks to change the number of edges in a

graph or the number of differences among graphs, the user
is not directly changing the hyper-parameters. We must
translate the feedback into an appropriate change in the
hyper-parameters to produce the desired outcome. To rep-
resent user preferences, we use a binary matrix, S, the same
size as G (m × K). Each entry, Sik, indicates the user’s
desire to see the presence or absence of edge i in task k. Us-
ing this input, we can move the learned structures G in the
direction of the user preferences S by finding an appropriate
adjustment to Λ.

An example illustrates how the user representation works.
Consider the case where a user wishes to see fewer differences
between tasks a and b. Let the currently existing set of non-
zero edges in graph a be A and the set of non-zero edges
in graph b be B. Then the user feedback defines a set U of
edges, any one of which could change to satisfy the user. If
the user wishes to see fewer edges that exist in a but not b
then the set difference A \ B must get smaller. Therefore
U = A \ B. We set Sea = 0 ∀e ∈ U and Seb = 1 ∀e ∈ U . S
encodes the user-preferences to see one of the specific edges
to be added or removed. The remaining entries in S are set
to the current values of G, i.e. Sek = Gek ∀e /∈ U and ∀k.

Formally, the rules for representing user feedback depends
on the action taken by the user. The rules are defined as:

• Fewer edges in task i:
Assign Sei = 0 ∀ e = {1, 2, . . . ,m}.
Assign Sek = Gek ∀ e = {1, 2, . . . ,m} and ∀ k 6= i.

• More edges in task i:
Assign Sei = 1 ∀ e = {1, 2, . . . ,m}.
Assign Sek = Gek ∀ e = {1, 2, . . . ,m} and ∀ k 6= i.
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• Fewer edges in task i that are not in task j:
Define set U = {e = {1, 2, . . . ,m}

∣∣ Gei = 1∧Gej = 0}.
Assign Sek = 0 ∀ e ∈ U and k = i.
Assign Sek = Gek otherwise.

• More edges in task i that are not in task j:
Define set U = {e = {1, 2, . . . ,m}

∣∣ Gei = 0∧Gej = 0}.
Assign Sek = 1 ∀ e ∈ U and k = i.
Assign Sek = Gek otherwise.

3.4 Local Move Toward User Desires
The goal is to obtain a setting for Λ = [λ1, λ2] that creates

graphs that are nearly the same as the current solution,
but one edge closer to the user’s desires S. Therefore, we
define an objective function that measures the squared error
between S and G:

g(Λ) =

K∑
k=1

∑
e∈E

(Sek −Gek(Λ))2 . (1)

The user’s feedback asks us to take just one step in the
direction of this objective (only one edge is added or deleted
at a time). We are not fully optimizing the objective. The
gradient is given in Eq 2:

∇Λg = −2

K∑
k=1

∑
e∈E

(Sek −Gek(Λ)) · ∇ΛGek(Λ)

= −2 · JΛ( ~G) · (~S − ~G) ,

(2)

where ~S and ~G are vectors formed by stacking the columns
of the S and G matrices respectively. JΛ(~G) is the 2 × | ~G|
Jacobian matrix, with each entry in the first row the par-
tial derivative of Gek with respect to λ1 while the second
row is with respect to λ2. Our objective is to find the mini-
mum step size η that gives the incremental change requested.
Once η is found, the new value of the hyper-parameters is:

Λnew = Λ− η · ∇Λg . (3)

The new hyper-parameter values are fed back into the learn-
ing algorithm, the visualized results are updated and the
cycle continues if the user gives more feedback.

3.5 Computational Challenges
The above objective requires two computationally expen-

sive steps. The first is the calculation of the Jacobian (the
gradient ∇ΛGek(Λ)). The computational complexity of this
depends on the specific model of multitask graph struc-
ture learning used. For the Bayesian discovery of multitask
Bayesian networks format given in the next section, the par-
tial derivative with respect to λ1 (sparsity) is trivial, but the
partial derivative with respect to λ2 (the transfer strength)
is computationally equivalent to calculating the multi-task
family scores. Which is to say that it is exponential and
could take minutes (depending on complexity-reducing ap-
proximations). However, we note that the gradient depends
only on the current model and not user feedback. Therefore,
the gradient can be calculated in the background while the
user is looking at the previously learned graphs and making
a choice about feedback to give.

The other computationally expensive procedure is the in-
ference of G(Λ) for each task. For the Bayesian discovery
of multitask Bayesian networks approach given here, to up-
date G the graphs must be re-learned (exponential time, or
approximated with MCMC).

4. EXPLORATION OF MULTITASK
BAYESIAN NETWORKS

Here we apply the above framework for interactive graph
exploration to the specific problem of Bayesian discovery of
multiple Bayesian networks, particularly those with transfer
bias from related data. Then we discuss how to cache in-
termediate calculations to make updating the transfer bias
faster on subsequent calculations. Finally, we show how dis-
crete graphs are obtained from the expectations on edges.

4.1 Preliminaries
A Bayesian network is a directed acyclic graph that repre-

sents a joint probability distribution as P (X) =
∏p
i=1 P (xi|πi),

where πi is the parent set of child i. That is, the value of
xi depends directly on the values of all xj ∈ πi. Bayesian
structure discovery produces a posterior estimate of the ex-
pectation of each edge in a Bayesian network [7, 10]. For
multitask Bayesian networks, there is a posterior estimate
of the expectation of each edge in each task, which we or-
ganize into a matrix W, denoted 0 ≤ wek ≤ 1. An edge
is described by an indicator function fi(πi) such that the
edge xv → xi exists (and fi(πi) = 1) iff xv ∈ πi, otherwise
fi(πi) = 0. The probability of the edge wek is therefore the
expectation of f in task k for that edge. The expectation is
calculated over all orderings, ≺, of the nodes in the Bayesian
network, as in Equation 4. For a given ordering, the parents
of a node i must precede i in the order.

wek =
∑
≺

P (≺)
∑
G⊆≺

P (G|≺)P (D|G)fe(πe) , (4)

where G ⊆≺ means that the graph structure G is consistent
with the order ≺; and πe is the parent set of node xe in
graph G.

Relatively efficient methods for exactly calculating each
we for single-task learning exist [10]. The method breaks
down into three steps:

1. Calculate the family scores from data. These are called
the β functions, βi(πi) = P (πi)P (xi|πi)fi(πi). It is
assumed that the computational complexity of each of
these is some function C(n) that depends on the num-
ber of samples n. The maximum number of parents
allowed for any node is typically fixed to a small nat-
ural number, r. Therefore, there are O(pr+1) of these
functions to calculate for a total computational com-
plexity of O(pr+1C(n)).

2. Calculate the local contribution of each subset U ⊆
V − {i} of potential parents of i. These are called
the α functions, αi(U) =

∑
πi⊆U P (πi)P (xi|πi)fi(πi).

There are an exponential number of subsets U , there-
fore there are an exponential number of α functions.
Using a truncated fast Möbius transform [2], all of the
α functions can be computed in O(p2p) time, assuming
that the β functions are pre-computed and that there
is a limit, r, on the maximum size of the parent sets.

3. Sum over the subset lattice of the various Ui to ob-
tain the sum over orders ≺. Although the number of
orders is p! there is no need to enumerate each order
explicitly. The potential parents of each node i depend
only on the set of parents Ui that precede it, not on
the ordering of the parents within Ui. Using dynamic
programming, this sum takes time O(p2p) [10].
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The total computational complexity for a single task isO(p2p+
pr+1C(n)). This is the exact calculation of the posterior.
For large networks, roughly p > 30, the exponential term is
intractable. In these cases, we can use MCMC to approx-
imate the sum over orders [18]. To limit the computation
of the polynomial term, we can choose a sufficiently small
r or further reduce the number of potential families using
candidate parent sets [8].

To learn multiple Bayesian networks simultaneously, we

replace the single-task prior P (πi) with a transfer bias P (π
(k)
i , π

(j)
i )

that shares information among tasks k and j [19]. The trans-

fer bias penalizes the number of parents in π
(k)
i that are not

also in π
(j)
i for all pairs of tasks (k, j). This transfer bias

encourages similar graph structures to be learned for each
task, and has been shown to produce more robust networks
[17, 19]. In terms of the three-step method above [10], this
means replacing the β functions with [19]:

βki(πi, λ2) =fi(π
(k)
i )P (x

(k)
i |π

(k)
i )P (π

(k)
i , π

(j)
i )

=fi(π
(k)
i )P (x

(k)
i |π

(k)
i )× 1

(K − 1)(4− λ2)|Ui|
×∑

j 6=k

∑
π
(j)
i ⊆Ui

P (x
(j)
i |π

(j)
i )(1− λ2)∆(π

(k)
i ,π

(j)
i )

 ,

(5)

where ∆(π
(k)
i , π

(j)
i ) = |π(k)

i \ π(j)
i |. We assume each β func-

tion takes time C(nk) to compute, where nk is the number
of samples in task k. Under transfer learning, there is a now
a sum over parent sets for each task, therefore the compu-
tational complexity is O(Kpr) for each β function. There
are Kpr+1 of these functions to calculate. This gives a to-
tal computational complexity for all multitask β functions
of O(K2p2r+1). Note that for visualization and interactive
purposes, the number of tasks is typically K = 2 for ease of
end-user interpretation of the results.

Once the multitask β functions are calculated, the rest
of the posterior estimate can be calculated using existing
algorithms, such as exact expectation over orders [10, 21] or
MCMC approximations [18].

4.2 Efficient Computation of Transfer Bias
We store intermediate calculations to speed up any future

calculations with different values for λ2. We achieve this by
noting that the function ∆ can only produce a finite number
of integer values in the range [0, r]. By grouping the parents
sets, we can re-arrange terms to group together the parent

sets π
(j)
i that will produce the same value in the ∆ function.∑

π
(j)
i ⊆Ui

P (x
(j)
i |π

(j)
i )(1− λ2)∆(π

(k)
i ,π

(j)
i ) =

=

r∑
δ=0

∑
π
(j)
i |∆(π

(k)
i ,π

(j)
i )=δ

P (x
(j)
i |π

(j)
i )(1− λ2)δ

=

r∑
δ=0

(1− λ2)δ
∑

π
(j)
i |∆(π

(k)
i ,π

(j)
i )=δ

P (x
(j)
i |π

(j)
i )

(6)

By separating the sum over individual scores, we can store
the sums and re-use them later if λ2 changes. We define the

(a) W1 (b) W2

Figure 4: Estimated posterior likelihoods for two tasks with
λ2 = 0. There are 8 variables, and 8 × 7 possible directed
edges, which are organized as a weighted adjacency matrix.

γ functions as these sums:

γkiδ(πi, δ) =
∑
j 6=k

∑
π
(j)
i |∆(π

(k)
i ,π

(j)
i )=δ

P (x
(j)
i |π

(j)
i ) ,

for all πi ⊆ V − {i}, δ ∈ Z, 0 ≤ δ ≤ r .
(7)

With a maximum parent set size r, the maximum value that
δ can take is r. Therefore, the number of γ functions to be
calculated are: Krpr+1, one for every family in every task for
every value of δ. The calculation of all of these γ functions
is O(K2rp2r+1C(n)).

We rewrite the β functions using the pre-computed γ func-
tions. Notice that the computational complexity of the β
function is now linear in r. This means that the functions
can be computed quickly for various values of λ2.

βki(πi, λ2) =
fi(π

(k)
i )P (x

(k)
i |π

(k)
i )

(K − 1)(4− λ2)|Ui|
·
r∑
δ=0

(1− λ2)δγkiδ(πi, δ)

(8)
These γ functions are also used in the calculation of the

Jacobian.

4.3 Thresholding for graphs
The feature probabilities, wek, learned from Equation 4

can be organized into square matrices Wk for each task k
representing the directed edges of a network. Figure 4 shows
an example of these learned feature posterior probabilities.

In order to display graphs to the user (see Figure 5), we
threshold the wek values, showing only the edges with like-
lihoods greater than some cut-off value 0 ≤ λ1 ≤ 1. Clearly,
λ1 will control the density of edges in the displayed graphs.
In this work, we employ a soft-threshold sigmoid function to
define the learned graph:

Gek =
1

1 + exp[−β(wek − λ1)]
. (9)

For sufficiently large values of β > 1 this is equivalent to a
hard threshold at λ1.

Mathematically, this thresholding of edge expectations is
a loss of information. For comparative network analysis, it
may seem desirable to keep all edges weighted by their ex-
pectation. However, from the end user perspective, nearly
all graph visualization systems allow thresholding out the
weakest edges to get a clearer picture of the network, and so
we treat thresholding as a necessary step for visualization.
When comparing the similarities and differences among a set
of graphs, it is helpful to be able to control for the number of

93



Smoking

Bronchitis LungCancer

VisitToAsiaTB

TBorCancer

Dyspnoea

Xray

(a) G1 for λ1 = 0.1

Smoking

Bronchitis LungCancer

VisitToAsia TB TBorCancer

Dyspnoea

Xray

(b) G1 for λ1 = 0.5

Smoking Bronchitis LungCancer VisitToAsia TB TBorCancer

Dyspnoea

Xray

(c) G1 for λ1 = 0.8

Smoking

Bronchitis

LungCancer VisitToAsiaTB

TBorCancer

Dyspnoea

Xray

(d) G2 for λ1 = 0.1

Smoking

BronchitisLungCancer VisitToAsiaTB

TBorCancer

Dyspnoea

Xray

(e) G2 for λ1 = 0.5

Smoking

BronchitisLungCancer VisitToAsiaTB

TBorCancer

Dyspnoea Xray

(f) G2 for λ1 = 0.8

Figure 5: By thresholding at λ1, we obtain graphs Gk from the weighted adjacency matrices Wk.

(a) W1 (b) W2

Figure 6: Estimated posterior likelihoods for two tasks with
λ2 6= 0. There are 8 variables, and therefore 8 × 7 possible
directed edges, which we have organized into a weighted
adjacency matrix.

differences between the graphs. By encouraging the graphs
to be similar, we can reduce the number of spurious dif-
ferences learned, and display only differences that are most
likely to be real (see Figures 6 and 7). The λ2 parameter
controls the amount of similarity bias which encourages the
wek and wej values of tasks k and j to be close, as in Fig-
ure 6. This means that as the w values move closer together,
some will cross the threshold, as in Figure 7, therefore, both
parameters will have a noticeable effect on both the number
of edges learned and the number of differences.

5. NUMERICAL ESTIMATION OF HYPER-
PARAMETERS

The previous section showed how to learn multiple Bayesian
networks given data and hyper-parameter settings. This sec-
tion outlines our method for incorporating user preferences
into the learning algorithm. Once feedback has been re-
ceived from the user, the hyper-parameters Λ(G,S) need to
be updated. This is computationally expensive, and so we

lay out a numerical estimation of Λ.

5.1 Estimation of Λ for Multitask Bayesian Net-
works

To re-learn graphs after getting feedback from the user, we
take one step toward minimizing the distance between the
learned graphs an the given user preferences, as in Equa-
tion 1. First, we need to calculate the Jacobian ∇ΛGek(Λ)
in Equation 2. For multitask Bayesian networks, the partial
derivative with respect to λ1 is fairly straightforward.

∂

∂λ1
Gek =

−βe−β(wek−λ1)

1 + e−β(wek−λ1)

= −βe−β(wek−λ1)Gek

(10)

The partial derivative with respect to λ2, on the other hand,
is more complicated to calculate because the family scores
within the sums depend on λ2. Therefore, the partial deriva-
tive of each of these family scores must be computed, and
the sums re-calculated.

∂

∂λ2
Gek =

= −βe−β(wek(λ2)−λ1)Gek
∑
≺

∑
π
(k)
e ⊆Ue

fe(Gk)P (x(k)
e |π(k)

e )×

 ∑
π
(j)
e ⊆Ue

P (x(j)
e |π(j)

e )
−∆(1− λ2)∆−1+ |Ui|(1− λ2)∆(4− λ2)−1

(4− λ2)2


= −βe−β(wek(λ2)−λ1)Gek

∑
≺

∑
π
(k)
e ⊆Ue

fe(Gk)P (x(k)
e |π(k)

e )×

 ∑
π
(j)
e ⊆Ue

P (x(j)
e |π(j)

e )
(1− λ2)∆ikj

(4− λ2)2
·
(
|Ui|

4− λ2
− ∆ikj

1− λ2

)
(11)
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Figure 7: By thresholding at λ1, we obtain graphs Gk from the weighted adjacency matrices Wk with λ2 > 0.

This can be re-written using the pre-computed γ func-
tions.

∂

∂λ2
Gek =

=− βe−β(wek(λ2)−λ1)Gek
∑
≺

∑
π
(k)
e ⊆Ue

fe(Gk)P (x(k)
e |π(k)
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[
r∑
δ=0

(1− λ2)δ

(4− λ2)2
·
(
|Ui|

4− λ2
− δ

1− λ2

)
γkeδ(π

(k)
e , δ)

]
(12)

The minimum step size is η such that Λnew = Λ − η∇Λg
gets G(Λnew) one edge closer to S.

∑
e,k

|Sek −Gek(Λnew)| −
∑
e,k

|Sek −Gek(Λ)| = −1 (13)

We solve for η using binary search until the above criteria is
met.

6. DISCUSSION
There is strong motivation for creating interactive human-

in-the-loop algorithms for exploring comparative dependency
networks. Here we discuss our initial findings on benchmark
networks, share case studies on real data and then suggest
directions for future work.

6.1 Demonstration on Benchmark Networks
We use the benchmark Asia network to explore the prac-

ticality of this interactive approach. The Asia network con-
tains 8 discrete variables [12]. In order to produce multi-
ple networks with some edges different, we randomly delete
each edge with probability p = 0.1. If an edge is deleted,
the conditional probability table for the child is modified by
summing over the removed parent. This produces a set of
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Figure 8: Modified asia networks: summary statistics about
learned network models for various values of sparsity and
transfer hyper-parameters.

networks that are similar to the original Asia network but
with a few edges different.

Using two tasks, and starting with an initial value for
Λ = [0.5, 0], we learn networks G. Then simulated feedback
responses, S, are given by randomly choosing a user action
at each stage. For each of these feedback matrices, we track
the movement in Λ to investigate the effect of S on Λ. For
comparison, we also perform a grid search by running the
multitask network learning algorithm for combinations of
settings of λ1 and λ2 evenly spaced in the valid range for
each parameter. Figure 8 shows results of a grid search
for one set of data, with 100 samples drawn from modified
Asia networks. As expected, neither the number of edges
nor the number of differences learned vary linearly with the
input hyper-parameters. Whereas, by design, the interactive
algorithm takes steps evenly in terms of the number of edges
or differences learned.

One question is whether the gradient direction is typi-
cally aligned with just one hyper-parameter, or if it is usu-
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ally more “diagonal”. If it is typically aligned with just one
hyper-parameter, then we could adjust each parameter inde-
pendently rather than calculating the gradient. We observe
that it is typically diagonal (takes a step in both λ1 and λ2

directions), however there are some cases where the gradient
direction is nearly zero for either λ1 or λ2.

It is difficult to ascertain the interestingness of a solution
for these benchmark networks. We have shown that grid
search covers objectively uninteresting solutions; in the form
of redundant solutions, overly dense solutions and empty
solutions. These benchmark networks are not from a real
domain (or it is an overly simplistic domain), therefore there
is not a practical way to judge the subjective interestingness
of the solutions to an uninteresting benchmark problem. To
analyze the usefulness of the interactive algorithm from the
end-user perspective, we therefore rely on case studies from
real data.

6.2 Case Studies
Results on both neuroimaging and protein studies were

presented to domain scientists using our interactive com-
parative network visualization. In both cases, a machine
learning expert initially loaded the result networks into the
visualization system and then manned the controls for ad-
justing the number of edges and the number of differences.
After a few minutes of looking through network solutions
with various numbers of edges and differences, the domain
experts typically made requests, such as to see “the highest
confidence edges shared by both tasks.” The domain experts
were able to take over the controls themselves and expressed
appreciation for being able to visualize so many solutions
quickly.

Anecdotally, we find that different domain experts are in-
terested in different levels of confidence in edges and differ-
ences. For the neuroimaging study, the domain expert was
most interested in extremely high confidence differences, se-
lecting difference networks with only three dependencies in
each. On the other hand, the biologists looking at protein
data were interested in difference networks with 100 depen-
dencies. These two anecdotes support the idea that different
users could have different inexpressible objective functions
in mind. However, we need to have different domain experts
analyze the same data to see if the various interests are due
to the users or if it is inherent in the data.

Often in machine learning, the goal is to find the single
best solution to a problem. However, while looking through
the various solutions produced by different hyper-parameter
settings, the domain experts did not ask how to select the
single best solution. They fully understand the concept of
exploring the precision-recall tradeoff. Yet, they did ask
whether there is any way to get a confidence interval for
the dependencies and differences. Instead of adjusting the
number of edges/differences, they would find it preferable to
be able to quantify the confidence of edges/differences.

6.3 Future Work
This paper provides a framework for creating interactive

multitask graph structure learning algorithms. These algo-
rithms remain computationally challenging. The Bayesian
posterior distributions on multiple Bayesian networks, in
particular, do not scale well to large networks. The scal-
ability problem is endemic to the problem of Bayesian net-
work learning. Performing updates in real-time for large

networks will be computationally difficult. We could allevi-
ate this problem through the use of approximate or heuristic
network structure learning. Doing so requires extensive eval-
uation on the tradeoffs between speed and accuracy, and so
we leave this for future work.

Other graph learning algorithms, such as graphical lasso
[15, 4], scale to large networks much better than Bayesian
networks. Therefore, we would like to apply the proposed
interactive method to multitask graphical lasso. However,
the graphical lasso objective with respect to λ1 and λ2 is
discontinuous; therefore, the gradient (Equation 2) is unde-
fined at precisely the points that we care about. Currently,
we are investigating numerical approximations to the reg-
ularization path or heuristics for finding the discontinuous
“hinge” points quickly. Such algorithms that calculate the
regularization path for individual networks have been devel-
oped [6, 22]. However, there is not any such algorithm for
multitask network learning.

Typical grid search methods are inefficient and informa-
tion criteria based tuning guidelines often are not ideal. In-
teractive guidance provides fine-grained control over explo-
ration of the solution space in those areas that are of highest
interest to the user. We could take a hybrid approach, first
computing results over a coarse grid, then giving the user
the ability to take small local steps or to jump to another
area of the hyper-parameter space using the pre-computed
results.

Other forms of feedback could be incorporated rather than
just increasing or decreasing the number edges and differ-
ences. For example, one request from domain scientists is
being able to query a specific edge, and see what the whole
network looks like at the threshold point where that edge
appears. A similar query could be imagined for edge dif-
ferences. These type of queries should be straightforward
to implement algorithmically. The challenge is in creating
a user interface to gather this type of feedback. Working
closely with domain scientists, we could find other queries
that would make exploring solutions easier for the user.

The interactive approach presented here assumes that a
human will guide the objective function via feedback about
the hyper-parameters. However, the idea of beginning at an
initial point in the solution space and exploring solutions by
modifying hyper-parameters could be accomplished without
a human. A virtual user that begins with no transfer and
repeatedly requests fewer differences, is essentially an auto-
mated process for exploring the regularization path along
the “differences” axis. The result of such a solution path is
a ranking of the strength of the differences found. There-
fore, the updates to the algorithm presented in this paper
could be used as steps in an automated iterative algorithm,
instead of an interactive human-in-the-loop algorithm. This
is an interesting direction to explore to see whether the hu-
man users or the automated approaches are more effective
at finding interesting solutions.

7. CONCLUSIONS
The concept of interactive network comparison is com-

pelling. The hypothesis space is large and the learned mod-
els are complex. Presenting only a single solution (even if
it fits the data well) is unsatisfactory. Yet, it is not easy to
display all possible solutions at once and summary statistics
about the potential patterns only tell a part of the solution.
Graphical models are frequently used in knowledge discov-
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ery because they help to quickly visualize complex patterns
of dependency. In an increasingly interactive world, it is
frustrating to the end user to see static results of a learn-
ing algorithm and not able to explore alternative solutions
on the fly. Therefore, human-in-the-loop interaction is nec-
essary for comparative dependency network learning. The
first challenge in making a machine learning algorithm inter-
active, is to translate user feedback into changes in hyper-
parameters that control the learning algorithm. The second
challenge is to efficiently update results to be seen in real-
time. We introduce a framework for interactive multitask
graph structure learning with a specific implementation of
multitask Bayesian networks and show that the results are
preferable to the standard grid search over hyper-parameter
space. In practice, all machine learning applications involve
some form of interaction between looking at results and ad-
justing the algorithm to investigate alternative results. Au-
tomating this interactive process allows domain scientists
and other end users to work more efficiently while discover-
ing patterns in their data.
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ABSTRACT
We present a general method for employing interactive embedding
techniques to enable an analyst to explore a larger collection of lo-
cal patterns. The common idea among pattern-mining methods is to
list descriptions of subsets of a dataset according to some interest-
ingness measure. Because the space of all patterns in a dataset is ex-
ponentially large in the number of attributes, most pattern-mining
algorithms reduce the output for the analyst to a small set of highly
interesting and diverse patterns. However, by discarding most of
the patterns, these methods have to make a trade-off between rul-
ing out potentially insightful patterns and possibly drowning the
analyst in results. We propose an alternative. To counteract infor-
mation overload, we mine a rather large set of patterns and study
this collection using an interactive embedding technique. Using
this interactive, visually driven exploration technique, the analyst
can develop an understanding of the patterns, their distribution, the
concepts underlying them, and how they interrelate.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
ing; H.5.2 [Information Interfaces and Presentation]: User In-
terfaces—Interaction styles

General Terms
Rule and pattern mining, Exploratory analysis

1. INTRODUCTION
We propose an extension to the classical pattern-mining approach.
Our idea is to not focus on condensing the resulting output to a
small set of high-quality patterns, but rather to visually explore the
distribution of a larger collection of patterns as a whole. To do so,
we empower the analyst to actively steer the perspective of a two
dimensional projection of the mined patterns. Altering the perspec-
tive and seeing how related patterns move, zooming and filtering
the collection and inspecting structures of interest closer, lets the
analyst keep the overview even on larger pattern collections.

Classical pattern-mining algorithms, like closed frequent item set
mining, subgroup discovery, and exceptional model mining—to
name just a few—search for patterns of high interest to the analyst
in a dataset. The goal is to retrieve a small collection of easy-to-
understand patterns that expose main concepts occurring frequently
within the dataset. In Section 2 we briefly discuss several pattern-
mining algorithms and their main objectives. The formal definition
of a pattern, how its interestingness is measured, and how the fi-
nal result is compiled differs from method to method. In general,
one can say that a pattern is a description of a subset of the dataset

that should be easy to understand. A very commonly used pattern
format, which is also used throughout this paper, is the conjunction
of different attribute=value assignments. For instance, the pattern
“type=fish and color=blue” describes all blue fishes in a dataset at
hand. The result set that is finally delivered to the analyst is usu-
ally determined by considering the support of the patterns, a quality
measure, and the redundancy among the patterns of the result set.
To keep the result set at a convenient size, classical pattern-mining
algorithms have to carefully consider whether the information in
each pattern bears insight or might contribute to overload.

We propose an interactive, visually driven extension to the classi-
cal pattern-mining procedure that does not discard any discovered
patterns before presenting the results to an analyst. The idea is not
to deliver a condensed result set, but rather to mine a larger collec-
tion of patterns first and then project them into a two-dimensional
space, with similar patterns being close to each other. This en-
ables further visual analysis. The insights gained from actively
exploring the pattern distribution help the analyst to understand
and interpret the results of the classical pattern-mining methods.
The exploration of the pattern distribution follows Shneiderman’s
information-seeking mantra “Overview first, zoom and filter, then
details-on-demand” [30]. Our proposed approach enables the an-
alyst to grasp the pattern collection as a whole and then to further
discover and dig deeper into regions of interest. In earlier publi-
cations, we investigated different algorithms that enable direct in-
teraction with an embedding to explore a dataset interactively. The
direct visual feedback of seeing how the distribution of all data
records changes upon interaction can help the analyst understand
the underlying structure of the data and formulate hypotheses. One
common way to provide the interface for the interaction is to let
the analyst select data points as control points and relocate them
in a “drag-and-drop” manner within the embedding. Altering the
positions of these control points triggers the embedding technique
to recalculate the whole projection, subject to the updated control-
point locations. The recalculation can usually be done efficiently,
such that the updates resulting from the interaction can be rendered
live. For an impression on the update-rate of the here used imple-
mentation please have a look at Appendix A.1. Note that there are
also other methods of interacting with an embedding, e.g., employ-
ing must-link / cannot-link constraints, filtering and inspecting the
sub-selection, or simply highlighting and brushing.

The remainder of the paper is organized as follows. In Section 2
we discuss related research and in Section 3 we introduce a general
framework for interactive pattern exploration. Section 4 demon-
strates our approach in several scenarios on a cocktail ingredient
dataset before we finally conclude in Section 5.
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2. RELATED WORK
Related to our work are basically two areas of research, pattern
mining and interactive embedding methods. For the pattern-mining
methods we have to distinguish whether a label is considered. Prob-
ably the most-known pattern-discovery technique that does not con-
sider a label is frequent item set mining. Here all conjunctions of
attribute=value assignments are listed in decreasing order of the
number of data records that support the pattern [1, 15]. Because
the set of all 1-frequent patterns of a dataset can be exponentially
large in the number of attributes of the dataset, usually only the
top-k patterns with a thresholded minimum support are considered.
However, often the set of frequent patterns contains redundant de-
scriptions; i.e., the same set of data records is described by dif-
ferent patterns. Closed frequent items-set mining methods [4, 32]
counteract this by only listing the closure of each of these sets as
a unique descriptor. Other ways to discover interesting patterns in
an unlabeled dataset are, e.g. to compile an output set of small
size that possesses a high entropy [25] or to find large tiles of 1-
assignments in a binary dataset [12].

For labeled datasets, (closed frequent) subgroup-discovery algo-
rithms [18, 20, 33] find patterns with a significant difference be-
tween the label distribution of the whole dataset and the one ex-
posed by the patterns. Exceptional model mining [21], a general-
ization of subgroup discovery, allows for more-complicated target
concepts, like multiple labels. Another generalization applies the
theory of relevance [11, 19] to the found subgroups. Relevant sub-
group discovery algorithms [11, 13, 24] deliver only patterns that
are not covered by any other pattern in the result set. The term ‘cov-
ering’ implies that there is no generalization of a subgroup that ex-
tends the subgroup’s support set by strictly positively labeled data
records. ∆- and ε-relevant subgroup discovery methods [14, 23]
loosen this tight formulation and allow the considered generaliza-
tions of a subgroup to have a controlled amount of additional neg-
atively labeled data records in the support set.

A different approach to the discovery of interesting patterns is to
sample from the space of all patterns. Note that pattern sampling
does not aim at delivering a condensed result set, but instead sam-
ples the patterns with a probability proportional to a given inter-
estingness measure. Possible measures are, e.g., sampling propor-
tional to a pattern’s frequency, its squared frequency, its lift, or the
area it tiles in the dataset [5]. In addition, pattern sampling can also
take labels into account, such that patterns with a high positively
and a low negatively labeled share in the support set are more likely
to be drawn. The probability of a pattern being drawn can be calcu-
lated efficiently [6] by using the sampling technique coupling from
the past.

Pattern sampling is a good showcase to demonstrate our approach
and can be a good option in cases where the space of all patterns is
extremely large, such that classical pattern-mining algorithms take
too long to terminate. This is especially important if the analyst is
on a time budget and the listing strategy of the mining algorithm
does not correlate with the relevance of the patterns to the analyst.
In this case, sampling from the whole pattern space can yield inter-
esting patterns much earlier. Boley et al. [5] show such an example
on the primary-tumor dataset, where the patterns that are most dis-
criminating between the labels are among the least-frequent.

Apart from local pattern discovery, there is also related work in the
area of embedding data into a lower-dimensional space for visual-
ization and interaction. Many classic techniques are unsupervised

and static, like the well known principle component analysis (PCA)
[16], multi-dimensional scaling (MDS) [8], isometric mapping [31]
and locally linear embedding [29]. These methods consider the dis-
tances between the data records in different ways and find lower di-
mensional embeddings which exhibit similar the distance relations.
The projection pursuit method [10] follows a different objective, it
searches for interesting projections of the data that display a high
degree oy non-gaussianity.

In order to incorporate interaction into the dimensionality-reduction
algorithms, the static embedding approaches are typically extended
to consider additional user feedback and thus provide an interface
with the lower-dimensional embedding of the data to the analyst.
There are different approaches for deriving the embedding and in-
corporating interaction. Some techniques enable the user to re-
locate selected points within the embedding and incorporate the
placement of these control points as constraints or regularization
into the optimization problem of a (kernelized) principal compo-
nent analysis (PCA) [28, 26]. Other techniques embed the data
via MDS user-suggested locations of the control points [7, 9, 22].
In contrast to these methods, least squared error projections [27]
calculate the embedding solely by considering the control points’
original attributes and user-specified embedding locations, ignor-
ing the covariance among the rest of the data records. The interac-
tive embedding technique used in our upcoming study in Section 4
minimizes the uncertainty of the resulting embedding, given a prior
belief about it, conditioned on the control points’ placements [17].
Throughout this paper we refer to this technique as most-likely em-
bedding (MLE). In addition, this method can also be used to ac-
tively propose control points to the analyst that minimize the un-
certainty about the resulting embedding and thus should be placed
next.

Finally, but without a focus on interaction, Berardi et al. proposed
to embed collections of patterns in order to discover structures among
them by using MDS as the embedding technique [3]. The pairwise
similarities between the patterns, required by MDS, were derived
by calculating the Jaccard index between two patterns.

3. A GENERAL INTERACTIVE PATTERN
EXPLORATION PROCEDURE

Our approach to studying a larger collection of patterns is to embed
them into a lower-dimensional space for further interactive visual
analysis. Due to the many different ways this can be done, we
do not want to propose one particular exploration technique, but
rather give a guiding framework on how to gain insights from a
larger pattern collection by exploring it interactively. Our proposed
procedure comprises the following steps:

1. Mine a large collection of patterns.

2. Represent the patterns in a canonical way as vectors.

3. Embed these vectors with an interactive embedding method
and explore the pattern distribution.

4. Inspect the emerging structures of interest deeper.

In our upcoming exemplary study, we utilize a two-dimensional
scatterplot for visualization, with each pattern being a point within
the plot. Often the initial visualization of the pattern distribution,
before any interaction at all, already exhibits interesting structures
that invite the analyst to deeper inspection. By further interacting
with the embedding by, e.g., selecting single patterns as control
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Table 1: Exemplary results of the ten highest quality patterns, delivered by different pattern-mining approaches on the cocktail
dataset. Note that here the top-10 frequent item sets are also all closed. The high-lift patterns were sampled according to their rarity
measure [6]. In case of subgroup discovery, the label indicates whether a cocktail is creamy or not.

Unsupervised pattern-mining methods Supervised pattern-mining methods

Frequent (closed) item sets Sampled patterns with high lift closed subgroups ∆1-relevant subgroups

Vodka Vodka & Cranberry juice Baileys Baileys
Orange juice Vodka & Triple sec Crème de cacao Crème de cacao

Amaretto Baileys & Kahlúa Milk Milk
Pineapple juice Vodka & Gin Kahlúa Kahlúa

Grenadine Vodka & Blue curaçao Baileys & Kahlúa Cream
Gin Pineapple juice & Malibu rum Cream Irish cream

Baileys Vodka & Amaretto Irish cream Crème de banana
Tequila Vodka & Rum Vodka & Baileys Butterscotch schnapps
Kahlúa Orange juice & Amaretto Crème de banana Whipped cream

Triple sec Vodka & Tequila Baileys & Butterscotch schnapps Vodka & Kahlúa

points and relocating them in a playful manner, the analyst can see
how other patterns relate, as they move accordingly. On the other
hand, the analyst does not have to ‘play’ with the embedding, but
can also directly express desired similarities among patterns by se-
lecting similar ones and placing them close to each other in the
embedding. In this way the analyst can also incorporate domain
knowledge into the embedding. The above mentioned structures
that occur in the visualization can come in various shapes; clusters
of patterns, regions of higher density, outliers, or mirroring shapes
can all be fruitful to investigate. Reasoning about the contents of
these structures and how they differ from another usually uncovers
interesting aspects about the patterns and the original dataset.

4. AN EXEMPLARY STUDY
In this section, we demonstrate the use of our interactive pattern-
exploration approach by performing an artificial exemplary knowl-
edge discovery session on a cocktail-ingredient dataset. The data is
an excerpt of the drinks presented on the website webtender.com.
It can be downloaded, together with our interactive embedding tool
from http://kdml-bonn.de/InVis. In the following we give an exam-
ple of a concrete instantiation of the above introduced framework.
This setup is precisely the workflow that we use in our exemplary
study in Section 4.1. For the other examples in Sections 4.2 and
4.3, only the first step changes, as the pattern collection is retrieved
using different algorithms.

1. Mine the 1000 most-frequent item sets from the cocktail dataset.
Here, every cocktail is described as the set of ingredients it
contains.

2. Represent each of the 1000 frequent item sets by a binary
vector over all occurring items of the pattern collection in
lexicographical order.

3. Visualize the pattern vectors, using the most-likely embed-
ding technique with an initial PCA embedding as the prior
mean and interact with it to shape out interesting structures.

4. Inspect these structures by highlighting patterns that contain
certain ingredients and by listing the five most-present single
items of the structure in a tag cloud.

A list of the ten highest-quality patterns, found by several classical
pattern-mining algorithms, is given as a reference in Table 1. The
first three methods, frequent, closed frequent, and sampled high-lift

patterns, do not consider label information, but provide us with an
overview on the most-striking ingredients and ingredient combina-
tions. The subgroup- and relevant-subgroup-discovery methods on
the other hand do use a label and show us ingredients (and their
combinations) that are strongly related to it. For these methods, we
manually assigned a label to each cocktail according to whether it
is “creamy”. In Sections 4.1, 4.3 and 4.2 we will apply our interac-
tive approach on the output of different pattern-mining algorithms
with the goal of gaining additional insights into the results of Table
1 and to understand the patterns’ relations. In each session we mine
1000 patterns and represent them as binary vectors over all items
that occur within the patterns, sorted in lexicographical order. We
then visualize the mined patterns using an interactive embedding
technique and search for emerging structures in an interactive man-
ner.

In the following studies we employ a variant of Iwata, Houlsby
and Ghahramani’s most-likely embedding technique [17] to inter-
act with the embedding via control points. The general idea be-
hind this method is to customize a matrix that projects the data
into the embedding space in a probabilistic way. This projection
matrix is assumed to be matrix-normal distributed, a matrix-valued
extension to the normal distribution. Ultimately, MLE calculates
the embedding with the least uncertainty about the placement of
the data records, given a prior belief on the projection matrix and
conditioned on the control points’ placements as evidence. In con-
trast to Iwata et al.’s method we do not use the Laplacian of the
nearest-neighbour graph, but instead the projection onto the first
two principal components as prior belief about the embedding (see
Appendix A.1).

Finally, inspecting the structures that emerge when interacting with
the embedded patterns can be done in various ways. In our exem-
plary study we use two simple, yet effective methods. The first is
highlighting all the patterns within the embedding that contain an
item of interest. Second, we also consider presenting the five most-
frequently occurring items in a studied structure in a tag cloud. It
is also possible to use more-sophisticated methods to study the pat-
tern distribution. For example, we could perform pattern mining
on the previously discovered patterns that form such a structure.
Alternatively, we can also find a single well-suited representative
pattern of the structure However, as our study shows, it is possi-
ble to gain insights and craft hypotheses using only our employed
naïve methods.
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4.1 Frequent Itemsets
In this section we show our proposed approach in action and demon-
strate how the frequent patterns reflect rudimentary properties of
the original dataset. Note that investigating the most frequent item
sets with our proposed method serves mostly the purpose of a sanity
check and demonstrating our approach in action. Figure 1 shows
the 1000 most-frequent item sets of the cocktail dataset represented
as binary vectors over all items, embedded onto their first two prin-
cipal components. Immediately, we can see two well separated
clusters that resemble roughly in their shape. Investigating these
clusters closer reveals that the right one contains only patterns that
include the ingredient Vodka, the most-frequent single item in the
original dataset, whereas the left one doesn’t (see Figure 1, left).
The second most-frequent ingredient, Orange juice, determines whether
a pattern is mapped to the top or to the bottom of the embedding
(see Figure 1, right).

Figure 1: The 1000 most-frequent item sets of the cocktail
dataset, embedded onto their first two principal components,
labeled by the presence of Vodka (left) and Orange juice (right).

Interacting with the embedding by relocating two control points,
as shown in Figure 2, unravels the blending of the patterns that
contain Orange juice and the ones that don’t. The resulting four
clusters clearly separate the patterns by their presence or absence
of the ingredients Vodka and Orange juice.

Figure 2: Dragging two control points (emphasized in blue) to
new locations, reveals a structure that was previously hidden in
the PCA embedding. The four clusters indicate the presence or
absence of the two ingredients Vodka and Orange juice.

Figure 3 inspects one of these emerging structures, the top-right
“Vodka and no Orange juice cluster” from Figure 2, in a closer
manner.
With a glance at the top-left picture of Figure 3 we can see that the
corresponding patterns containing Vodka but no Orange juice also
frequently contain other strong alcohols, especially Rum, Gin, and
Triple sec. We can also observe a sub-cluster structure within this
particular embedding, which is determined by the presence or ab-
sence of the ingredients Rum (top-right, highlighted in green) and
Gin (bottom-left, highlighted in blue). The ingredient Triple sec

Figure 3: A closer look at the top-right cluster of Figure 2 re-
veals the ingredients that the patterns from the “Vodka and no
Orange juice cluster” are frequently mixed with (top-left). The
other three pictures indicate the presence of Rum (highlighted
in green), Gin (blue), and Triple sec (red).

(bottom-right, highlighted in red), although frequent within this
cluster, seems not to contribute to the sub-structure, but can be
found in all of the sub-clusters. This is an interesting finding, as
Triple sec is much more frequent than Rum. In fact, Rum does not
even occur among the ten most-frequent ingredients, yet it has a
striking influence on the structure of this cluster. Note that this
is an insight that could not have been drawn purely from the re-
sults of Table 1. In the following sections we will perform sim-
ilar studies with pattern collections that were drawn according to
more-sophisticated interestingness measures than frequency of oc-
currence.

4.2 Sampled Patterns
A fruitful way to quickly draw patterns from a dataset according
to different interestingness measures is to sample. Although sam-
pling itself provides diversity among the drawn patterns, sorting
them by the measure and listing only the top-k ones can reintro-
duce a certain amount of redundancy. On the other hand, diversity
is not impaired when exploring the set of all sampled patterns in
our proposed way and the analyst is further enabled to discover the
different concepts among the patterns. In this study, we sampled
1000 patterns from the cocktail dataset, according to their rarity
measure, a variant of the lift measure which promotes patterns con-
taining items that are statistically dependent (see Appendix A.2).
The samples were drawn using the direct local pattern sampling
tool which was provided to us by Boley et al. [6] and can be down-
loaded from http://kdml-bonn.de/?page=software_details&id=23.

The retained collection of the sampled patterns demonstrates well
how our proposed approach benefits from the use of interactive em-
bedding techniques. The plain PCA embedding of the frequent pat-
terns in the previous Section 4.1 already exhibited a clear structure,
which directly invited the analyst to further explore it. For this par-
ticular set of sampled patterns, however, this is not the case. Figure
4 shows the sampled rare patterns embedded into two dimensions,
using different techniques, namely PCA, Isomap, and locally linear
embedding.1

1 The latter two techniques estimated the assumed lower-
dimensional manifold via the 10-nearest-neighbour graph.
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Figure 4: 1000 patterns sampled from the cocktail dataset, ac-
cording to the rarity measure [6] and embedded, using different
techniques: principal component analysis (left), locally linear
embedding (middle), and isometric mapping (right).

Although these static embeddings exhibit no structures that imme-
diately raise the analysts attention, relocating just one control point
in the interactive embedding reveals clusters that were previously
obscured, as Figure 5 (top) shows.

Figure 5: Relocating a control point, using our interactive em-
bedding reveals a clear cluster structure (top). The middle pic-
tures highlight the patterns containing Vodka (left) and Orange
juice (right). The bottom pictures inspect the composition of
two of these clusters.

The two middle pictures of the figure highlight the patterns contain-
ing Vodka (left) and Orange juice (right). Clearly we can identify
the Vodka cluster, but the other clusters come as a surprise. They
do not relate to the Vodka / Orange juice segmentation that was al-
ready discovered in Section 4.1, but capture concepts of their own.
The two highlighted ones at the bottom of the figure revolve around
juicy and Rum-heavy cocktails. Because of the initially mentioned
redundancy among the highest rated rare patterns, the results from
Table 1 mainly exhibit patterns associated with Vodka. Our pro-
posed interactive discovery approach, however, was able to over-
come this drawback and reveal other, novel concepts among the
high-rarity patterns.

4.3 Subgroup Descriptions
Patterns can be discovered according to different measures of in-
terest. In the previous sections we studied pattern sets that were
drawn proportional to their measure of frequency or rarity. In some
cases, however, the analyst might also want to consider label infor-
mation. A classic pattern-mining approach that does so is subgroup
discovery. It ranks the patterns by how much the label distribution
of the data records described by the pattern diverges from the la-
bel distribution of the whole dataset. In this section we study the
top-1000 closed subgroup descriptions from the cocktail dataset,
ranked according to the binomial test quality measure [4] (see Ap-
pendix A.3). Figure 9 shows the embedding of these 1000 patterns
onto their first two principal components.

Figure 6: The top-1000 subgroup descriptions associated to the
label creamy, embedded onto their first two principal compo-
nents. The four clusters coincide with the presence/absence of
the two most striking ingredients among creamy cocktails: Bai-
leys (left) and Kahlúa (right).

Similar to the embedding of the frequent item sets, but without the
help of any interaction, the mined patterns fall directly into four
clusters. This time, the clustering goes along with the presence
or absence of two other frequently occurring ingredients: Baileys
(left) and Kahlúa (right). From the list of frequent patterns in Ta-
ble 1 we know that these ingredients are highly frequent, and from
the list of subgroups we know that they have a stark impact on
the label of a cocktail. In this sense, the observed segmentation
doesn’t come as a total surprise. However, following the results
of Table 1 we might instead have expected Crème de cacao, in-
stead of Kahlúa. The visualization helps to understand the relations
among the listed patterns and invites for further exploration of the
exhibited structure. To do so, this time we do not interact with
the embedding via the earlier utilized control points, but rather by
focusing on a subset of the distribution. We filter the pattern collec-
tion to keep only the ones that contain neither Kahlúa nor Baileys
and re-embed them onto their first two principal components. The
selection corresponds to the patterns belonging to the bottom right
cluster of Figure 6. The re-embedding of these selected patterns
can be seen in Figure 7 below.

Figure 7: A PCA embedding of the patterns belonging to the
bottom right cluster of Figure 6. Again, the embedded patterns
can be neatly segmented by the presence of two highly frequent
ingredients, this time Vodka (left) and Crème de cacao (right).
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As the re-embedding is not a zoom, but a newly calculated PCA
embedding, we are able to discover structures that were previously
hidden due to the covariance among the patterns that are now fil-
tered out. Once again we observe that the patterns form four clus-
ters, corresponding to highly frequent ingredients, this time Vodka
and Crème de cacao. Note that this ‘four cluster segmentation’ is
not part of our proposed method, but stems form the sparsity which
transactional databases often expose. To achieve a clearer separa-
tion of the clusters in the visualization, we use again the placement
of a control point, as shown in the following Figure 8.

Figure 8: To retrieve a better separation between the clusters,
we interact with the embedding by selecting and relocating an
appropriate control point.

As an example, we pick two of the clusters from Figure 8 and study
their compositions. Figure 9 below shows the five most-frequent
ingredients within the patterns of these clusters in a tag cloud.

Figure 9: Inspecting the contents of two of the emerging clus-
ters. One interesting finding is the occurring separation be-
tween milky and chocolaty patterns. The cluster segmentation
stems from the presence of the ingredients Vodka and Crème de
cacao.

We can observe that the inspected regions contain patterns that stem
from two different types of creamy cocktails: milky and chocolaty
ones. This is an interesting finding, as the strict separation between
the clusters does not stem from the milky ingredients within the pat-
terns, but from the ingredients Vodka and Crème de cacao. How-
ever, using our interactive visualization, we were able to craft the
hypothesis that milky and chocolaty cocktails form different types
of creamy cocktails, offering a good next direction to explore.

4.4 Discussion
Using an interactive embedding of the patterns to visualize and
explore it, we were able to remedy the information overload that
comes naturally with the consideration of a large pattern collection.
Our proposed approach mainly collapses into a two step procedure:
(1) mine a large collection of patterns and (2) explore a visualized
embedding of the patterns in an interactive way. We demonstrated
our approach on pattern collections that resulted from three differ-
ent mining techniques, namely frequent pattern mining, sampling
patterns proportional to their lift, and subgroup discovery. In the

second step, we followed the information-seeking mantra and ex-
plored the obtained pattern collections in a top-down manner. We
started with a visual overview of the whole pattern distribution and
dug deeper on striking structures by interacting with the visual-
ization and investigating the emerging structures in different ways,
namely by

• reshaping the embedding via relocating control points.

• filtering out and re-embedding the remaining patterns.

• listing the most-frequent items of an inspected structure.

• highlighting all patterns containing an ingredient of interest.

By interactively exploring the pattern collection, we were able to
gain some minor insights that we could not draw by purely con-
sidering the results of Table 1. To give some examples, from the
list of frequent patterns we know that Vodka and Orange juice are
the most-frequent ingredients of the cocktail dataset, but the PCA
embedding was able to reveal how much more Vodka distinguishes
between the cocktails than Orange juice does. By inspecting the
sub-clusters that emerged from our interaction, we found a sur-
prisingly strong influence of the ingredient Rum on the cocktails
containing Vodka but not those containing Orange juice. This dis-
covery is backed up by the high-lift pattern Vodka & Rum that we
can find in Table 1. However, considering the mirroring of the “no-
Orange juice-clusters”, located at the top in Figure 2, we can also
craft a theory about a strong influence of Rum among the non-Vodka
patterns in general. We were also able to discover three strong
concepts among the patterns with a high lift: the pattern Vodka
& Something, fruity cocktails, and Rum-heavy cocktails. This is
especially interesting, as Rum does not rank among the ten most-
frequent ingredients. In addition, we were also able to discover
independently from Table 1 that Kahlúa, Baileys, Crème de ca-
cao and Milk are mainly responsible for a cocktail being labeled as
creamy.

However, the strength of our approach lies not in these discoveries,
but in the deeper understanding of the relations among the patterns
that it provides in combination with the classical pattern-mining
methods. By exploring the pattern embedding, interacting with
it, exposing interesting structures, and always collating the crafted
theories and insights with Table 1, we were able to develop an un-
derstanding of the different concepts that the original cocktail data
revolves around.

5. CONCLUSION
We proposed an extension to the classical pattern-mining approach
that enables the analyst to overcome information overload when
browsing and exploring a larger collection of patterns. The goal
of our proposed method is to help the analyst understand the un-
derlying distribution of the patterns and additionally to invite them
to further exploration. Whereas the classical pattern mining ap-
proach focuses on presenting a condensed set of high-quality pat-
terns, our approach uses interactive embedding techniques to visu-
alize and explore the distribution of a larger pattern collection. To
do so, we proposed a general four-step approach, where each step
can be instantiated in different ways. In our exemplary study, we
demonstrated the use of our approach by exploring and interacting
with three different pattern collections from a cocktail-ingredient
dataset. Collating our findings and the results of different pattern-
mining algorithms, we were able to forge and test hypotheses and
develop an understanding of the mined patterns and the different
concepts that they descend from.
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APPENDIX
A.1 The most likely embedding
Our approach for interacting with a lower-dimensional embedding
of data makes use of the matrix-normal distribution, an extension
of the multivariate normal distribution to matrix-valued arguments.
The idea is to find the linear projection from the original data space
into the embedding space that is most likely, given a prior belief
about the embedding and conditioned on the placement of selected
control points. The (p× q)-dimensional matrix normal distribution
MN p,q(R;M,Σ,Ψ) has the density function

MN p,q(R;M,Σ,Ψ) = (2π)−
pq
2 |Σ|−

q
2 |Ψ|−

p
2

exp
(
− 1

2
tr
[
Σ−1(R−M)Ψ−1(R−M)>

])
,

where:

- R ∈ Rp×q is the matrix-valued argument,

- M ∈ Rp×q is the location parameter, and

- Σ ∈ Rp×p, Ψ ∈ Rq×q are symmetric positive-definite scale
parameters that can be considered the “row” and “column”
covariance matrices, respectively.

Why is this useful? Suppose we have a matrix normal distributed
belief about a linear embedding matrix R:

p(R | θ) =MN (R;M,Σ,Ψ),

where θ represents the hyperparametersM , Σ, and Ψ. Now further
suppose that we have observed data X ∈ RD×N in a potentially
high-dimensional Euclidean space X = RD and that the user has
selected a total of m control points Y ∈ X and has placed them
in preferred locations W ∈ R2×m within the two dimensional em-
bedding. We will write D to indicate these observed data pairs
(Y,W ).

We also assume that the locations chosen for these points, given by
the user, represent the correct latent locations for these points, cor-
rupted by iid zero-mean isotropic Gaussian noise. Consider RY ,
which represents the embedded locations of Y given knowledge of
the latent embedding matrix R. Our assumption is that the control
points placed by the users are close to their ideal locations:

p(W | RY, θ, σ2) =MN (W ;RY, I, σ2I),

which indicates that each of the values in W differs from RY by
entrywise iid Gaussian noise with variance σ2. Henceforth we will
include σ2 in the set of hyperparameters θ.

Now we can reason about the linear projection matrixR that is most
likely, given a prior believe about the embedding and conditioned
on the observed values W :

p(R | Y,W, θ) =MN (R;MR|D,Σ,ΨR|D),

where

MR|D = M + (W −MY )(Y >ΨY + σ2I)−1Y >Ψ;

ΨR|D = Ψ−ΨY (Y >ΨY + σ2I)−1Y >Ψ.

In order to retrieve the final most likely embedding of all the data
points X , we simply have to calculate the MR|DX .

To utilize this method in a live-update manner, reasonably many
updates have to be calculated per second. If the interaction with
the embedding is only the movement of control points, then solely
MR|D has to be recalculated and multiplied by X to retrieve the

embedding. The following Figure 10 depicts the updates per sec-
ond for this case, depending on the number of attributes, data records
and used control points. However, if the selection of the control
points changes, also ΨR|D has to be recalculated (which on a reg-
ular PC runs in well under a second). As depicted, the update-rate
depends the strongest on the number of data records and drops with
an increasing amount of them. Using our non-tweaked implemen-
tation, a dataset of about 1500 data-records could be interacted with
at an update-rate of roughly 10-15 updates per second. The dataset
used in this experiment was an excerpt from the Communities and
Crime dataset, taken from the UCI dataset repository [2].
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Figure 10: Achieved updates per second for 1,10 and 20 se-
lected control points, depending on the number of data-records
and attributes of the dataset.

A.2 The rarity measure
The rarity of a pattern approximates the probability of occurrence
of the whole pattern weighted by the probabilities of the single
items that build the pattern not occurring. To put it in a formal way,
letD be a transactional database over a fix set of items. Further, let
P be a pattern, consisting of k of these items P = {p1, . . . , pk}.
The rarity of P is calculated as

rarity(P,D) = freq(P,D)
∏
pi∈P

(
1− freq(pi,D)

)
,

where freq(x,D) denotes the observed frequency of occurrence of
the pattern x in the database D.

There is a relation to the lift measure of a pattern, which is calcu-
lated by

lift(P,D) = freq(P,D)
∏
pi∈P

1

freq(pi,D)
.

Whereas rarity considers the absence-frequency of the singleton
items, lift considers the inverse of them.

A.3 Subgroup quality measures
In the context of subgroup discovery, the interestingness of a pat-
tern is measured by a quality function q(P,D) that considers the
pattern and the dataset and returns a real-valued number. This func-
tion usually combines the size of the support set of the pattern and
its unusualness w.r.t. the designated target label in the following
way:

q(P,D) = freq(P,D)α ·
(
share+(P,D)− share+(∅,D)

)
,
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where share+(P,D) denotes the share of the positively labeled data
records in the support set of the pattern P and share+(∅,D) the
share of all positively labeled data records over D. It is defined by

share+(P,D) =
freq(P,D+) · |D+|

|D| ,

with D+ denoting the set of positively labeled data records from
D. The coefficient α of the quality function is a constant 0 ≤
α ≤ 1, characterizing a family that includes some of the most-
popular quality functions. For α = 1 it is order-equivalent to the
weighted relative accuracy (WRACC) and the Piatetsky–Shapiro
quality function. For α = 0.5 it corresponds to the binomial test
quality function, which is used to mine the subgroup description
patterns in Section 4.3.
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ABSTRACT
In this paper we present an interface based on a recent generative
model, the counting grid, here re-introduced in its basic version
and largely revised to allow it to deal with large corpora. We show
that it is possible to visualize thousands of high order word co-
occurrence patterns by only viewing for a few minutes a new em-
bedding we propose for text visualization, browsing and search pur-
poses. We performed preliminary experiments with user tasks such
as word spotting, rapid content search and collateral information
acquisition.

1. INTRODUCTION
Embedding text documents into a 2D space (e.g. [13, 3]) has

always been an appealing idea: If we can turn a discrete complex
dataset into something that looks like an image, perhaps our brains’
low to medium-level processing layers will take the lead and help
us consume the dataset in a flash, the way our eyes process al-
most any natural image. The old idea that various types of knowl-
edge may already be captured in image-like mental representations
in our mind [8] further strengthens our expectation that even the
knowledge that is inherently as discrete, hierarchical and propo-
sitional as that encoded using language, can be transformed into
something continuous and referentially isomorphic, a data-driven
smooth mapping that our eyes can easily saccade over. Another
vehicle for of obtaining a “birds-eye-view” is the notion of the
word/tag cloud where a smaller or larger handful of characteristic
words is shown to the user as a summary and a very rudimentary
index of the data.

However, multiple dangers lurk here. Our eyes saccade over text
differently than over natural images [10, 7, 2]. The speed of visual
word recognition is highly dependent on the words’ immediate con-
text, which can both speed it up and slow it down [2].
This of course has consequences to visualization and user interface
design. For example, a 2D embedding of titles in a distance-based
document embedding is hard to make sense of as the processing
required for us to understand the discovered links is at a too high
a level to gel well with the visual traversing paradigm. High level
category labels are often added to aid the user in making sense of
different areas in the embedding, but as indicated above, these la-
bels are likely to make it even more difficult to understand the out-
liers that happen around the boundaries. This is why some visual-
izations only show documents as dots of different colors indicating

broad categories, but essentially hiding all of their content until the
user mouses over. Data that way does become more image-like but
is akin to a very simple image.

On the other hand showing a large number of constitutive words
from a document is problematic due to the users’ reading habits.
For instance, alphabetically arranged tags can easily be misinter-
preted by a user who tends to look for a meaning in groups of
words, and so the sequence of tags “living man missing money
news” from a word cloud from one day of CNN news may all refer
to different news stories, yet it is difficult for a human reader not to
jump to a conclusion that either money or the man is missing.

It has been shown, e.g. in [12], that semantic organization of
words significantly affects the user’ interaction with the data, mak-
ing lower-level connections (folksonomy based) better suited for
consumption than the higher level language models. Thus it is not
surprising that most previous user studies of various text visual-
ization techniques similar to these resulted in the conclusion that
when the user is interested in a very specific bit of information,
the regular search engine interface will suffice, and that in most
other situations the beneficial effects of the visualization are hard
to quantify, other than through user satisfaction levels. Users tend
to favor these tools, perhaps because, as we stated above, the idea
of being able to extract the essence of the data and lay it out onto
the screen in a rich, yet easy to grasp manner is just as appealing to
the users as it is to the researchers, even if it is hard to realize.

In this paper we present an interface built upon the recent Count-
ing Grid model [6] and we strongly believe that the approach may
be a step forward. We also propose few learning algorithm aimed
at avoiding local minima and producing more grids for usable for
users.

1.1 The counting grid: A way forward?
We imagine a large grid of cells, each with a few words of dif-

ferent weights so chosen so that words collected from any single
document in the dataset can be represented well by the weighted
words in one small window encompassing several cells in the grid
Fig. 1a. Aided with a good optimization technique and a user in-
terface that fits the model well, several very interesting properties
of such an embedding arise.

Firstly, it is possible to make the mapping very dense, avoiding
the excessive levels of empty space in typical distance-preserving
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embedding methods (note that our visual system distorts distances,
see, for example [5]).

Secondly, in such dense mappings the grid is too small to avoid
overlaps of windows, and so then the extent of the similarity of
the nearby documents in terms of simple word usage statistics can
readily be seen directly in the grid: The words shared between the
two documents will tend to be seen in the region of the overlap
of the two windows. Thirdly, if we travel slowly across the grid
and look at the documents mapped there, we should often see grad-
ual thematic shifts as the words early in our path are dropped and
new ones are added, but the overlap in content between our new
area of focus and the one just before tends to stay high. Obviously
for diverse enough datasets, occasionally the smoothness in theme
shifts will have to be violated in areas where two different topics
expanding from different points clash in a single area creating a
rift between two less related groups of documents. Finally, in most
places we look, the words we can get from the nearby cells will tend
to be highly related, and this should make it easier to perform visual
word recognition tasks if all these words are shown on the screen,
such as word spotting in a search for a particular word it should
be often easy to pick out document groupings, focus on one of the
relevant ones, and then follow the trail to the point of interest, then
jump to another grouping of interest and focus on the new area, etc.

We call this model the counting grid, as it is a grid of word
counts, and in the next section we state this idea mathematically.
Then, we describe the techniques needed to properly optimize and
present the counting grid to the user as an interface to various
medium-sized datasets (cooking recipes, research papers, movie
descriptions, etc.). Finally, we demonstrate that our interface does
indeed expose high order statistics (word co-occurrence statistics
beyond pairs) which then become a powerful visualization tool for
both understanding the extent of the dataset and discovery of items
of interest. We show that both the word combinations are mean-
ingful beyond what was previously attempted, increasing the word
spotting speeds, and that they lead to good indexing of a diverse
dataset enabling users to perform dozens of semi-related search
tasks in parallel in mere minutes and then walk away with much
more collateral information that seeped into their brains serendipi-
tously.

Algorithm 1: EM-Algorithm to learn the Counting Grids.

Input: Bag of words, ctz for each sample
while Convergence do

% E-Step ;
foreach Sample t = 1 . . . T do

1. Update qtk ∝ exp
∑

z c
t
z · log hk,z ;

% M-Step ;

2. Update πk,z ∝ πold
k,z ·

∑
t c

t
z

∑
i|k∈Wi

qti
hi,z

;

3. Compute hk,z = 1
W1×W2

∑
i∈Wk

πi,z;
4. Compute the Log-Likelihood (Eq. 1) ;
5. Check for convergence ;

6. Return πk,z and {qtk} ;

2. THE COUNTING GRID MODEL
The counting grid consists of a set of discrete locations in a map

of arbitrary dimensions (32 × 32 or 64 × 64 in the examples used
in this paper). Each location contains a different set of weights
for the each of the words in the vocabulary. A document has its

own word usage counts cz and the assumption of the counting grid
model is that this word usage pattern is well represented at some
location i in the grid. The window floating over the grid captures
well variation in certain types of documents where we can see slow
evolution of the topics, where certain words are dropped and new
ones introduced.

A particular example of a counting grid and its weights are il-
lustrated in Fig. 1 using font size variation, but showing only the
top 3 words at each location. The shaded cells are characterized
by the presence, with a non-zero probability, of the word “bake”1.
On the grid we also show the windows W for 5 recipes. Nomi
(1), an Afghan egg-based bread, is close to the recipe of the usual
pugliese bread (2), as indeed they share most of the ingredients
and procedure. Note how moving from (1) to (2) the word “egg”
is dropped. Moving to the right we encounter the basic pizza (3)
whose dough is very similar to the bread’s. Continuing to the right
words often associated to desserts like sugar, almond, etc emerge.
It is not surprising that baked desserts such as cookies (4), and pas-
try in general, are mapped here. Finally further up we encounter
other desserts which do not require baking, like tiramisu (5), or
chocolate crepes.

Formally, the basic counting grid πi,z is a set of normalized
counts of words / features indexed by z on the 2-dimensional dis-
crete grid indexed by i = (i1, i2) where each id ∈ [1 . . . Ed] and
E = [E1, E2] describes the extent of the counting grid. Since π is a
grid of distributions,

∑
z πi,z = 1 everywhere on the grid. A given

bag of words/features, represented by counts {cz} is assumed to
follow a count distribution found somewhere in the counting grid.
In particular, using windows of dimensions W = [W1,W2], each
bag can be generated by first averaging all counts in the window
Wk = [k, . . . ,k + W] starting at grid location k and extend-
ing in each direction by Wd grid positions to form the histogram
hk,z = 1

W1×W2

∑
i∈Wk

πi,z , and then generating a set of features
in the bag. In other words, the position of the window k in the
grid is a latent variable given which the probability of the bag of
features {cz} is

p({cz}|k) =
∏
z

(hk,z)
cz =

1

W1 ×W2

∏
z

(
∑
i∈Wk

πi,z)
cz ,

Fine variation achievable by moving the windows in between any
two close by but non-overlapping windows is useful if we expect
such smooth thematic shifts to occur in the data, and we illustrate
in our experiments that indeed it does.

To learn a Counting Grid we need to maximize the likelihood of
the data:

logP =
∑
t

log
(∑

k

·
∏
z

(h
ctz
k,z)
)

(1)

The sum over the latent variables k makes it difficult to perform
assignment to the latent variables while also estimating the model
parameters. The problem is solved by employing a variational EM
procedure, which iteratively learn the model, alternating E and M-
step. The E step aligns all bags of features to grid windows, to
match the bags’ histograms, inferring , i.e., were each bag maps
on the grid. In the M-step we re-estimate the counting grid so that
these same histogram matches are better. The procedure is illus-
trated with algorithm 1; πold

k,z is the counting grid at the previous
iteration.
Even for large corpora the learning algorithm converges in 70-80
iterations, which sums up to minutes for summarizing corpora of

1Which may or may not be in the top three
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Figure 1: a) A particular of an area of a counting grid πi learned over a corpus of recipes. In each cell we show the 0-3 most probable
words greater than a threshold. The area in shaded red has π(′bake′) > 0. b) The interface built upon the (whole) counting grid
shown in panel a) (here shaded in yellow). We also highlighted areas relative to spices (blue), vegetables (green), meats (red).

over 40K documents.
As this EM algorithm is prone to local minima, the final grid will
depend on the random initialization, and the neighborhood relation-
ships for mapped documents may change from one run of the EM
to the next. However, in our experience, the results always appear
very similar, and most of the more salient similarity relationships
are captured by all the runs.
More importantly, a majority of the neighborhood relationships
make sense from a human perspective and thus the mapping gels
the documents together into logical, slowly evolving (in space)

themes. As discussed below, this helps guide our visual attention
to the subject of interest.

3. COUNTING GRID AS A USER INTER-
FACE

In order to use the counting grid as an underlying representation
in a powerful UI, we found three improvements necessary.

3.1 Optimization algorithms
Given the considerations in the introduction, the quality of em-
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Figure 2: Interface: a) Counting Grids b) Distance Embedding + Keywords.

bedding can have a dramatic effect on the user experience. The CG
model is more directly tied to the goal of visualizing higher order
statistics in word usage patterns than previous models: It literally
attempts to lay the words out so that nearby words can be found
commonly in the documents (and even in the intersection of highly
related documents). Thus the direct optimization of data likelihood
should get us good embeddings. However, there are no globally op-
timal likelihood optimization methods for this model. Fortunately,
the basic Em model derived in [6] does at least provably converge to
a local minimum. Furthermore, for the purposes of the browser we
tested here, we experimented with various ways of escaping local

minima, such as sampling methods, random restarts, online learn-
ing/gradient descent, and found that the nicest grids with highest
likelihood tend to be created by a multiresolution approaches.
In a first approach an 8 × 8 grid is first estimated using the 5 × 5
mapping window size. The grid is then upsampled by replacing
each cell with a 2× 2 set of cells with the same distribution. Then
the EM learning of this 16 × 16 grid is continued using the same
size of the mapping windows (5 × 5) until convergence. This pro-
cess is then iterated to the desired size of the grid.
In a second approach we kept fixed the grid size, progressively re-
ducing the window size every 10 iterations until we reached the
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desired window size.

We found that these multi-resolution approaches create longer
thematic shifts and fewer boundaries among areas, which is gen-
erally more pleasing to the eye and makes it easier for the user to
learn “the lay of the land.” We believe that further improvements
in optimization algorithms may create dramatically better results,
esp. for large datasets.

3.2 Pan-zoom-click-search interface to a CG
The interface, shown in Fig. 2-4, allows several modes of inter-

action with the data and the grid. The grid itself is rendered so that
the font size denotes the local weights of different words directly
imported from the model. The weights essentially indicate how
likely the words are in context of other nearby words. We have im-
plemented a fast pan-zoom interface for exploration of the grid in
Silverlight (Fig.3 shows the zoom). A click (or a tap on touch de-
vices) shows the set of documents whose mapping windows over-
lap the point we clicked on. The list is shown on the right without
changing the grid view. The grid can be filtered in two ways: by
typing the search term in the search box, or by simply selecting a
word (right click on long tap). Two search results are illustrated by
Fig.4: in panel “a” memory, in panel “b”, forest (see the text box
on the top of the interface).

Assuming that a very specific search goal with a well formu-
lated query cannot be aided much by dataset summarization and
diversity exposure, we did not test the counting-grid representa-
tions primarily on such tasks. Instead, we have made our inter-
face as close to traditional search-based interfaces as possible for
such situations: The user can enter the search terms and the results
will be presented in the list on the right hand side of the interface.
However, through grid filtering described above, our interface also
provides a diversity viewing experience that aims to expose the
user to themes related to a specific successful query, as well as a
summary/grouping of relevant content for less specific queries and
summary, organization and visualization of the entire dataset for
multi-objective or free-form browsing experience. Importantly, the
counting grid representation combined with the pan-zoom-click-
search interface enables a unified way of data consumption across
these levels of granularity of user interest. For example, a high-
quality query that results in high relevance of returned items will
filter the very same grid representing the entire dataset, with the ef-
fects shown in-place, so that gradual removal of search query words
will expand the scope till the entire dataset is shown. As the relative
positioning of topics/themes stays fixed through this experience,
moving back and forth among different search goals with possibly
varying levels of specificity does not throw the user out of con-
text, which in traditional interfaces poses a barrier for multifarious
search and makes the user focus and organize their tasks linearly,
rather than in parallel. Perhaps most importantly for the diverse
application of the ideas presented here, the user interface is created
automatically from the dataset as the input, using an unsupervised
machine learning algorithm, and the result can in principle be re-
fined by professional curator/designer or collaboratively by users,
who can add their content or labels anywhere in the grid.

4. EVALUATION
We evaluated our interface in several ways. First, we were cu-

rious to see how much the direct optimization, in maximum likeli-
hood sense, of embedding word sharing patterns aids the visualiza-
tion of higher order co-occurrence statistics, and if these improve-
ments indeed yield to increased speeds of resulting word cloud

+
Neighborhood

3-Tuple = [ Spin, A tom ic, Latt ice ]

+
3-Tuple = [ Mice, Disease, Death ]

Neighborhood

a)

b)

Figure 5: a) A word embedding produced by an euclidean em-
bedding method. b) The process of tuple sampling: A position
is randomly picked on the grid and words are sampled from a
neighborhood.

skimming. As these results indicated a clear advantage of count-
ing grids over the alternatives, we next investigated the amount of
gleaned information during a short exposure to the data through
our interface and compared this directly with the state-of-the art,
but traditional web site interface to the same data, as such com-
parisons in the past tended to not show a quantifiable advantage of
word clouds over simple search interfaces, while at the same time
the user surveys usually showed that users like word clouds and are
under the impression that the clouds may aid them in goal-free ex-
ploration of the content.
In all the experiments we employed the multiresolution approach
of Sec. 3.1 to learn the grids, removing stop-words and applying
the Porter-stemmer algorithm [9].

4.1 Word combinations at random focus ar-
eas: Numerical comparisons

One of the immediate goals of CG optimization is to create a
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Figure 3: Zoom: a) A counting grid learned using Science magazine papers and reports. The user can zoom until visualizing the top
words of each source (panel b)

visualization in which high order statistics of many word combi-
nations can easily be visualized: In any local area of the grid, the
words seen in the neighboring cells should “go together” so as to
make the consumption of the grid easier. This aspect of the count-
ing grids can be quantified directly without user studies, through
hundreds of grid sampling steps.

In each step, a “neighborhood” in the window picked uniformly
at random 2, and then k words are drawn from that window ac-

2the curves look very similar for 3×3 to 7×7 window choices even
though the grids were learned using assuming that each document
maps to a 5× 5 window

cording to the local word distribution. This sampling process is
illustrated by Fig.5b.
Then these k-tuples are checked for consistency and diversity of
indexed content. The consistency is quantified in terms of the av-
erage number of documents from the dataset that contained all
k words selected, while the diversity of indexed content is illus-
trated through the cumulative graph of acquired unique documents
as more and more k-tuples are sampled and used to retrieve docu-
ments containing them.

We would expect that the CG model should show good consis-
tency of words selected this way as the model is in fact optimized
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Figure 4: Search results are presented as (non contiguous) islands on the grid, where different islands capture different semantics
of keywords. For example, a) search result of the word “memory” reveals three islands related to computer memory, brain memory
and the limbic system. Analogously b) search for the word “forest” revealed an island about deforestation and one about biodiversity
in forests. By interacting with these islands the user can filter out unwanted results, or discover new things.

so that documents’ words map into overlapping windows, and so
through the positioning and intersection of many related documents
the words should end up being arranged in a fine-grained manner
so as to reflect their higher-order co-occurrence statistics.
To the best of our knowledge there is currently no other technique
that attempts to perform similar optimization, so we compare here
with an approach based on previous techniques that achieved visu-
ally most similar arrangements, at least at a first glance (see Fig.2).

Some previous embedding techniques proposed word embed-

ding based on pairwise distances, or joint embedding of words
and the documents based on document-document and document-
word distances [11, 4]. The problem with these approaches is that
each word is assigned to a single location but certain highly infor-
mative words still assume multiple meanings in different contexts.
For example, the word “memory” in the corpus of Science mag-
azine papers can be found in articles on neuroscience, but also in
immunology (immune memory of the adaptive immune system),
device memory, as well as in quantum mechanics and occasional
computer science papers. This would make such a word a nexus

113



Corpus # Docs # Words Tokens Notes
Science Magazine 36K 24K 2.0M Papers and Reports

Allrecipes 43K 4K 10M
Arxiv 25K 31K 2.3M Computer Science
IMDB 18K 25K 0.9M Popular movies

Table 1: Statistics of the four corpora considered

of several different clusters, making the browsing confusing in that
area. Things are worse given that there are in fact many such words,
and the attempts of embedding into 2D in this way usually collapse.
Another promising approach is to simply focus on document em-
bedding and then show representative words from nearby docu-
ments in the plane [3]. The problem here is that most embedding
methods create a lot of empty space among clusters, which leads to
dramatic under use of screen real estate (see Fig.5a).

Nevertheless, we embark on this approach to build a reasonable
baseline for our method by further deforming the neighborhood re-
lationships are maintained but the grid is denser (otherwise, this
method would suffer on diversity measures described above). This
baseline is further aided by making an effort to avoid local word
repetitions which further reduce the information content of the grid
and thus the diversity measure above. Fig. 2a shows the best so ob-
tained embedding for allrecipes.com data, containing 43k recipes.
Although at a first glance the two visualizations share a lot of com-
mon qualities, the sampling experiments show a dramatic differ-
ence in favor of CG on four different datasets, all approximately
50K in size: Science Magazine articles from the last 10 years, all
of arxiv CS articles, allrecipes.com, and the most popular movies
from IMDB. Details of each dataset are reported in table 1.

As shown in Fig.6 the more traditional distance embedding +
keyword spraying approach matches, more or less, the quality of
CG when we sample for word pairs (k=2). However, as this ap-
proach, or any other in the literature does not attempt to directly
capture higher level statistics of word usage, even though the gen-
eral clusters look meaningful at a first glance that capture grow
structure of the data, the fine grained local structure of CGs much
better captures higher order correlation, with this advantage typi-
cally growing with k. One outlier seems to be the most diverse Sci-
ence dataset with the richest vocabulary. The curves in Fig. 6 are
pretty close, but Fig. 7a which shows the diversity of the indexed
information explains the difference. Fig. 7b, shows the gradient of
the last curve of Fig. 7a.
An embedding of words that creates the same trivial combinations
of words in many areas of the grid (e.g. {salt, paper, sprinkle}
would boost the fraction of dataset covered by this triple. How-
ever, the number of new documents would then not grow. In case
of counting grid, not only are the k-tuples meaningful, but they are
diverse and with repeated jumping over the grid more and more
content is being retrieved, which is the combination we want in a
user interface meant for summarizing, browsing and retrieval.

4.2 High speed multifarious search and the ex-
tent of collateral information gleaned

As we discussed in the introduction, the main motivation in re-
search on visualizing datasets by mapping documents and/or dis-
playing word clouds is in the potential ease in understanding the
extent of the dataset, locating topics of interest quickly when these
interests are not well defined, as well as accidental discovery of in-
teresting and useful information [1] that is somewhat related to the

original goals of the information seeking process.

Here we test the ability of users to rapidly gain insight both into
specific and broad topics which are either directly or indirectly re-
lated to a mix of topics of interest, as well the collateral information
gleaned in the process.
The traditional search paradigm would force us to try to look for
this research linearly, focusing on one are at a time, getting new
ideas for search only once we read the discovered papers. The
counting grid visualizations with orders of magnitude more words
than usual tag clouds and at a same time much denser and better
organized embedding of relevant documents may (and did) enable
us do some of these investigation rapidly and in parallel, jumping
from topic to topic as the links are revealed. We assume, of course,
that such multifarious search, where a variety of topics are of in-
terest, some at a high level, and others needing to be explored in
depth is often attempted by Internet users in a variety of tasks, and
we focus here again on the allrecipes dataset.

We created a questionnaire with 60 questions of various speci-
ficity about the contents of the dataset by repeatedly sampling recipes
form the dataset and formulating questions at different level of de-
scription depth, like “Are there Indian dishes here?”, “Are there
crepe recipes in this dataset?”, “Are there savory recipes?”, “Do
any recipes use zucchini?” etc. Then we added several control
questions for which we knew that they referred to items not cov-
ered by the dataset, like “Wine reviews” or “Cheese platters” or
“Cooking book reviews”. We expect that the users’ performance
on this task should be predictive of the experience they would have
with our tool in many real world scenarios.
We compared the CG interface with the allrecipes web’s own pro-
fessionally and community-curated easy-to-use and powerful inter-
face, which includes a modern search engine, various categoriza-
tions of the data, user-supplied votes and labels, etc.

We recruited seven subjects for the study and told them that they
would be asked to answer a series of questions, including a list of
ten that we read to them, and that they had 3 minutes to find out as
many answers as they can using one combination of a dataset and
an interface at a time.

We told the users that they would do this for two such combina-
tions and we convinced them that the two combinations differ both
in the extent of the data and the user interface, and that other than
the initial 10 questions, the questionnaires would also be randomly
related. However, to avoid issues with comparisons of different
questionnaires and datasets on a small sample of users, we in fact
varied only the interface, and used the same dataset asked the same
questions, but placed the competing interface second in the study,
where it would presumably have an advantage over our method
if the users would never the less be inclined to look for answers
to the questions beyond the initial ten questions. We hoped that
the limited amount of time provided for the task would minimize
that advantage anyhow, as our preliminary tests on the authors and
pre-test subjects indicated that more than five minutes were need
to perform all the searching necessary to cover a large fraction of
questions if the user is searching based on their memory of the en-
tire questionnaire. In addition, we found that no subject was able
to find information relevant to more than about half of the ques-
tions asked, indicating again that there was not enough time for the
traditional interface to gain significant unfair advantage over our
interface. No single question was answered correctly by all users,
except for the control questions, for which the real answer was no
(There were no wine reviews in the data, etc.), indicating that they
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Figure 6: Consistency results
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Figure 7: Diversity results

were giving us honest representations of what they remembered.
All seven users performed better using counting grids (p<0.01),
with the average gain in the number of questions answered of 60%
over the allrecipes.com interface, despite the potential advantages
that the latter may have had due to order of testing. The ability
to glean collateral information beyond the 10 questions to which
the users were primed was certainly biased by users’ food prefer-
ences or familiarity with cooking styles. Only our one Chinese test
subject detected traces of the Chinese cuisine in the counting grid
based on the combination of ingredients much more typical of the
Chinese cuisine; a quick click there indeed revealed Chinese dishes
he had in mind. The types of meat and vegetables the users found
or did not find in the dataset typically correlated with their prefer-
ence for these foods.
However, for all users in this small study, the intersection of their
preferences with the questions asked was enough to provide enough
answers in order to see the difference between the two interfaces.
Interestingly, the percentage of answered questions varied more
widely after using the allrecipes.com standard interface (as low as
22% and as high as 46%) than for CG interface (42% - 51%), which
provides another indication of the interaction between the users’
own memory and the CG. Using the standard search interface the
users could not remember or think to explore further items of low
interest to them, even after seeing recipes that could provoke fur-
ther investigation. But the word associations in the CG interface
seemed to more readily enter their visual field and remind them of
the task defined by the initial questions. Results are summarized in
Fig. 8.

In post-test interviews, all users indicated preference for the CG
interface for the task of rapidly discovering lots of information as
well as for organizing the data. They could simply “see much more
in parallel” in the CG interface, and could often recognize recipes
just based on the words in the grid and without opening any of the
documents mapped in the area. They also indicated that they had
a better understanding what data was exposed by the CG interface,
while the boundaries of allrecipes.com interface seemed uncharted
and the data thus appeared potentially vast (even though the num-
ber of recipes was approximately the same). When asked for a sub-
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Figure 8: Information gleaning experiment

jective estimate of how much information they encountered while
using the CG compared to the standard interface, they reported fac-
tors of 2-5, which are either inflated subjective estimates (compared
to the measured factors which varied between 1.2 and 1.9), or they
indicate that the users saw much more of the content related to their
food interests in addition to the content to which we primed them
to look for. The latter possibility would be in line with previously
observed difficulties in measuring the diversity of information the
user accesses during data exploration.

5. CONCLUSION
To the best of our knowledge, the counting grid visualization

we presented here is the first system that directly optimizes for si-
multaneous presentation of word co-occurrence statistics of various
orders well beyond the usual pairwise embedding. This is accom-
plished through a dense word and document embedding that facili-
tates a visual browsing and search paradigm that can more naturally
rely on the cognitive processes we employ when we scan visual
scenes as well as the ones that guide visual recognition of words in
skim reading. We have shown that the CG representation tends to
display words that go together in almost any location in the visual
field, and that by sampling different local combinations of words
we tend to identify a larger fraction of the dataset and in a more
diverse manner across locations than we can achieve using stan-
dard embedding methods to display large number of words from
embedded documents. We also find that this increased semantic or-
der does indeed facilitate faster visual processing of the word map,
as well as faster memorization of the word distributions in word
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spotting experiments. In addition to data organization, the CG vi-
sualization also facilitates interesting patterns of partial document
consumption. By spotting several related words, the user is re-
minded of the knowledge they already have, and may not even need
to open relevant documents. As described in the grocery shopping
case study, in such cases the effect is akin to parallel skim-reading
of hundreds of documents that contain the word combination to
narrow down on a known common theme and extrapolate (remem-
ber) the rest of the document to the extent needed by the user. In
addition, surprising combination of words in the area the user is
interested in can lead to serendipitous discovery of new documents
to be studied in detail.

From the perspective of word/tag cloud usability research per-
haps the most exciting result comes from our preliminary experi-
ments on multifarious search and serendipitous data exposure that
show that thousands rather than dozens of words on the screen can
still be consumed by the user and that the extent of the data ex-
plored this way is high enough that the differences can be quanti-
fied in user studies.

However, despite encouraging preliminary results, a lot about
counting grid representations and interface design remains to be
studied. We found that the quality of the embedding of high order
statistics matters, yet we know from our experiments that the cur-
rent algorithms are prone to local minima. Thus it remains to be
seen if the document packing can be done more optimally in the
maximum likelihood sense and if such improved grids would pro-
vide even better local word combinations that would be even easier
to browse/search. We have experimented with a wide variety of
medium-sized datasets containing tens of thousands of documents.
It remains to be seen what the best way would be to scale this ex-
perience to very large datasets. Interface refinements can play a
big role, too. For example, in our three-tiered approach to visual
searching over the grid – visual scanning, filtering by word seen
in the grid, or filtering by a typed word not yet spotted – the last
modality tended to be avoided by users to unreasonable levels be-
cause it was perceived to be at odds with the smoother experience
of combining visual scanning with mouse/touch actions.

6. REFERENCES
[1] P. André, M. C. Schraefel, J. Teevan, and S. T. Dumais.

Discovery is never by chance: Designing for (un)serendipity.
In In C and C Š09. ACM, 2009.

[2] C. A. Becker. Semantic context effects in visual word
recognition: An analysis of semantic strategies. Memory and
Cognition, 8(6):493–512, 1980.

[3] B. Fortuna, M. Grobelnik, and D. Mladenić. Visualization of
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ABSTRACT

Analyzing the relationship between location and time in a
spatio-temporal data is not trivial. It is even more chal-
lenging if the data contains uncertainty. In this paper, we
present a new method that visualizes spatio-temporal data
with uncertainty. This method is an extension of our 2D vi-
sualization technique called Storygraph, and it handles two
types of data uncertainty: (1) the spatial and temporal un-
certainty about an event; (2) the spatial and temporal un-
certainty between two events. We applied this method to
a case study that involves data extracted from witness tes-
timonies and field reports containing uncertainties inherent
to natural language.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Evaluation/methodology

1. INTRODUCTION
The introduction of geo-location sensors in mobile devices

and other commodity hardware has greatly aided in spatio-
temporal data collection. As a result, novel and effective
methods are needed to help analyze these great amounts of
spatio-temporal data. Traditional methods like maps fail to
show the temporal sequence of the events. An event in this
paper refers to a row in the dataset having distinct time and
location. If two events occur at the same location at different
times, the markers will overlap, resulting in a single marker.
Time series charts are helpful for presenting temporal infor-
mation but difficult for analyzing spatial information. Other
methods such as small multiples, animations, and 3D maps
have significant drawbacks.

In our previous work, we introduced a technique called
Storygraph [1] to address these issues. Storygraph is a 2D
technique that visualizes both spatial and temporal com-
ponents in an integrated graph. Our case studies demon-
strated the benefits of this method on datasets containing
precise geolocations and time such as military war logs [1]
and software commit histories [2]. However, when applying
our method to spatio-temporal data extracted from witness
testimonies and field reports, we encountered problems of
uncertainty in space and time. For example, our study of
511 interviews with first responders during the attack on
World Trade Center (WTC) on September 11, 2001 showed
that the narratives of these interviewees, who were trained
to report incidences, still contained a fair amount of uncer-
tainty in their descriptions of locations and times.

To address these issues, we developed a new version of Sto-
rygraph visualize uncertainty. In our revision, we begin by
categorizing uncertainty into two categories: (1) event un-
certainty and (2) between-event uncertainty. We designed
our method to distinguish and visualize these two types of
uncertainty. Event uncertainty is the spatio-temporal uncer-
tainty about the event itself, including events with poorly
specified spatial and/or temporal attributes. Between-event
uncertainty is the uncertainty between two precisely recorded
events, which we call them key events. This concept is in
part influenced by Hagerstrand’s Time Geography [3][4][5].
After specifying the key events, the between-event uncer-
tainties are visualized as space-time prisms between the key
events. Through this process, our visualization technique
can be used to study the interactions between people (or
characters) in both space and time.

The rest of the paper is organized as follows: Section 2
discusses related work in spatio-temporal and uncertainty
visualization. Section 3 presents the mathematical model of
Storygraph. Section 4, describes the classification of uncer-
tainty. Section 5 discusses how uncertain events are visual-
ized in Storygraph. Section 6 discusses how between-event
uncertainty is visualized. Section 7 presents a case study
featuring fire fighter interviews from WTC corpus. Section
8 concludes by summarizing our work and discussing future
works.

2. RELATED WORK
Maps and time series charts are the most common visual-

ization techniques to present spatial and temporal data sets.
Other techniques include [6] [7] [8] [9] [10] [11] [12] [13] [14]
[15] [16] [17] [18] [19]. These techniques, however, do not
deal with uncertainties in spatial or temporal dimensions
even though data collected from real world often contains
various levels of uncertainty because of unreliable memory,
unreliable source, or the inherent ambiguity of natural lan-
guage.

Much work has been done in visualizing uncertainty [20].
Here, we focus on closely related work in spatial temporal
data visualization. The most common method is to over-
lay uncertainty information on top of a map. For exam-
ple, Love et al. [21] used color coding, displacement map-
ping, and bar glyph on a 3D map to visualize uncertainty.
Some authors also used color to visualize probabilities on a
2D map [22][23]. Zuk et al. [24] used transparency, wire
frame, or location shift to present uncertainties on 3D mod-
els. Some scientific visualization methods deal with location
uncertainty by plotting multiple versions of the simulations
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or observations, which creates a spaghetti-like drawing of
data points. Other methods use contour lines or sound to
indicate uncertainty. However, most of the previous works
are about visualizing uncertainty data associated with loca-
tion and time rather than uncertainty in location and time
themselves. For example, color coding, displacement map-
ping, and bar glyph on a map cannot show the area of possi-
ble (but uncertain) locations. Wire frame and transparency
indicate the existence of uncertainty but not the possible
range of uncertain locations or times. Pebesma et al. [23]
used animation to show variability in time; but, with ani-
mation, users only see one image at a time, and it’s difficult
to conduct data analysis on a timeline [25][26]. Most impor-
tantly, previous methods have shown difficulty integrating
spatial and temporal uncertainty in one view.

The main difference between our method and previous
works is that, in our method, uncertainty information is not
displayed on a map but on the more abstract Storygraph.
The benefit is that it can visualize both spatial and tem-
poral uncertainty in a single 2D view. Our method can
clearly differentiate between uncertainty in location (spa-
tial uncertainty), time (temporal uncertainty) as well as a
combination of the two (spatio-temporal uncertainty). In
other methods, such differences are not clearly distinguish-
able. Our method also visualizes between-event uncertainty,
which is mostly ignored by other methods. Our between-
event uncertainty visualization is influenced in part by Hager-
strand’s Time Geography [3][4][5], a 3D map based visual-
ization.

3. STORYGRAPH
Storygraph is a visualization technique that presents an

integrated 2D view for spatio-temporal data [1]. It is a three-
axis coordinate system with two parallel vertical axes for
latitude and longitude and an orthogonal horizontal axis for
time. Figure 1 illustrates the basic ideas of Storygraph.

The top sub-figure in Figure 1 shows 6 accidents marked
on a map. Two accidents have been reported at each loca-
tion at different times of the year. However, as shown in this
figure, plotting these data points on a map results in over-
lapping markers. For the remaining non-overlapping mark-
ers, maps fail to show the temporal distance between these
events. The sub-figure at the bottom shows the same events
presented in Storygraph. Here, events are plotted on the
location lines with no overlapping. In addition, Storygraph
presents the temporal distance between the events. Figure 2
shows a Storygraph generated from the World Trade Cen-
ter (WTC) corpus generated by our program. Few patterns
that can be observed in this Storygraph are: (1) The points
are clustered around location (40.70,−74.00), (2) At times
t1 - t4 and later on around 15 : 12, there are events simul-
taneously taking place at many different locations.

Interpreting spatial information on Storygraph is not as
intuitive as that on a map; however, analyzing temporal in-
formation on Storygraph is quite intuitive. The following
analysis discusses the process of interpreting the spatial in-
formation on Storygraph.

Based on [1], let αmax and αmin be the maximum and
minimum latitude, and βmax and βmin be the maximum
and minimum longitude. Likewise, let Tmax and Tmin be
the maximum and the minimum timestamps.

The mapping function f(α, β, t) → (xstorygrah, ystorygraph)
of event E(lα, lβ , t) is given by:

Latitude Longitude

33.74

33.79

33.82

-84.39

-84.38

-84.35

Jul Aug Sep Oct Nov DecJun

July 4, July 28

July 4, Dec 24

July 4, July 15, Aug 6

A(33.74, -84.35)

B(33.79, -84.39)

C(33.82, -84.38)

Figure 1: Example of Storygraph constructed from
hypothetical accidents. Top: Outline map showing
the major highways in Atlanta and hypothetical ac-
cident taking place at the junctions A, B, and C on
the dates shown. Bottom: Same information plot-
ted on Storygraph (not drawn to scale for illustra-
tive purposes). Each location is represented as a
line joining the latitude and longitude in the ver-
tical axes. An event occurring at that location is
represented by a point on the line. This represen-
tation allows users to see the temporal context of
the events together with spatial context (i.e. when
did most accidents take place? July-August in the
figure above.)

ystorygraph =
(β − α)(x− Tmin)

Tmax − Tmin

+ α (1)

xstorygraph = t (2)

Assuming Tmin = 0 and Tmax = T without loss of gener-
ality, Equation 1 simplifies to

y =
(β − α)

T
x+ α (3)

Equation 3 is also the equation of the location line (Equa-
tion 1 rewritten in slope-intercept form).

In earlier sections, we discussed that a point on the Sto-
rygraph in the absence of location line can be mapped to
range of locations in geographical space. Thus, the function
f ceases to be one-to-one.

Lemma 3.1. A point on a location line in Storygraph at
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Figure 2: Left: Storygraph showing approximately 7000 events within 12 hours during 9/11 attack on WTC.
Annotations t1− t4 mark the key events: t1(8 : 46), first plane crashes into the North Tower; t2(9 : 03), second
plane crashes into South Tower; t3(9 : 59), South Tower collapses; t4(10 : 28), North Tower collapses. At each
of these times, events occurred simultaneously at multiple locations (marked by vertically aligned events). In
addition, it can also be observed that the events clustered around the location (40.70,−74.00). Right: Same
set of events plotted on the map. Maps supplement Storygraphs as identifying locations on maps is relatively
more intuitive.

time t corresponds to a precise point (geo-coordinate) on a

map.

Proof. Setting T = 0 and T = t Equation 3, we get
the ylat and ylng of the Storygraph. Thus, geo-coordinates
(α, β) can be obtained as

α = ylat ×
αmax − αmin

αmin × ymax

(4)

β = ylng ×
βmax − βmin

βmin × ymax

(5)

Lemma 3.2. Without location lines, a point on a Story-

graph at time t corresponds to a line segment on a map.

Proof. We can rewrite equation (3) as

β = (1−
T

x
)α+

yT

x
(6)

Thus, a fixed point (x, y) on the Storygraph corresponds to
many points (α, β) on the Cartesian map at time t = x:
those αmin ≤ α ≤ αmax and βmin ≤ β ≤ βmax satisfying
(6). Plotting these values of (α, β) results in a line segment
with non-positive slope since x ≤ T as illustrated in Fig-
ure 3.

Lemma 3.3. Without location lines, a vertical line seg-

ment at time t on a Storygraph corresponds to an area on a

map.

Proof. Consider a vertical line segment, with end coordi-
nates (x, y1) and (x, y2), y1 ≤ y2. Using 3.2, these extremes
of the line segment in (6) we get two straight line equations

β = (1−
T

x
)α+

y1T

x
(7)

β = (1−
T

x
)α+

y2T

x
(8)

Hence the vertical line segment between (x, y1) and (x, y2)
on the Storygraph corresponds to an area between two paral-
lel lines (7) to (8) in the geographical space. As in Lemma 3.2,
this area is also bounded by the maximum and minimum val-
ues of α and β – this results in a polygon as illustrated in
Figure 4.

Lemma 3.4. Without location lines, a vertical line seg-

ment at t on the Storygraph corresponds to a projected area,

AStorygraph ≥ Aactual in geographical space at t.

Proof. If the area on the plane is bounded by right rect-
angle, since ∀α : α1 ≤ α ≤ α2 and ∀β : β1 ≤ β ≤ β2,
AStorygraph = Aactual. For any other shape, the vertical line
segment in the Storygraph represents a rectangular bound-
ing box (from 3.3). Thus, ∃α : α ∈ AStorygraph − Aactual.
Hence, AStorygraph ≥ Aactual

Corollary 3.5. Real-world area at time t maps to a ver-

tical line segment in storygraph at time t.

Proof. Inverse of Lemma 3.4, when the exact coordi-
nates of all the four corners are known

we can state that an area Aactual in the geographical space
gets mapped to a line segment in the Storygraph orthogonal
to the time axis. The area formed by this line segment l

bounded by coordinates (α1, β1, t) and (α2, β2, t) is given by
AStorygraph = (α2 −α1)

2 +(β2 − β1)
2. Thus, AStorygraph ≥

Aactual.

Lemma 3.6. Storygraph preserves spatial proximity for lo-

cation lines but does not preserve spatio-temporal proximity

for events.
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t

At time t

Figure 3: Top: A point in the Storygraph at time t

and the corresponding location lines the point can
belong to shaded. Bottom: The line segment gen-
erated in the Cartesian coordinate by mapping the
point.

Proof. Two events close to each other in Storygraph
may not be close to each other in geographical space. Con-
sider two locations (α1, β1) and (α2, β2) in geographical space
where α1 ≪ α2. Since both of the axes are ordered in Sto-
rygraph, α1 ≪ α2 holds true as well.

4. CLASSIFICATION OF UNCERTAINTY
Different classifications of uncertainty have been proposed

[27][28]; however, most of these classifications are about un-
certainties introduced in scientific experiments or probabilis-
tic models. In our case, uncertainties are introduced in nar-
ratives. Thus, we classify this kind of uncertainty into three
categories:

Uncertainty about time and/or location of the event. This
type of uncertainty is characterized by the presence of phrases
denoting uncertainty before temporal or spatial description.
An example is “I got there maybe around 11 am.” The
phrase ‘maybe around’ adds uncertainty to ‘11 am’ in this
example. Such uncertainties may also arise from ambiguity
in language. For example, in “I was in Brooklyn when the
plane hit the building,” the word ‘Brooklyn’ does not give
a precise location. We call these types of uncertainties as
event uncertainty which can be further divided into three
sub-categories:

• Spatial uncertainty. This category includes events that
have precise time stamps but uncertain location.

• Temporal uncertainty. In addition to uncertain phrases
(e.g. maybe, about), temporal uncertainty may come
from the language itself. For example, in “I was at the
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�min �min
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�2

Latitude

Longitude
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�min

�max

�1

�2

�1

�1

�2

�2

t

At time t

Figure 4: Top: A vertical line in Storygraph at time
t and the corresponding location lines the line seg-
ment can belong to shaded. Bottom: The bounded
region generated in the geographical space by map-
ping the line segment.

station in the all day,” the phrase “all day”without any
modifier can refer to a wide range of time introducing
uncertainty.

• Spatio-temporal uncertainty. This category includes
events that have uncertainty in both time and loca-
tion. For example, in “It was in the afternoon, I was
heading south.” The words ‘afternoon’ and ‘south’ are
uncertain.

Uncertainty between two events. In “It was 8 in the morn-
ing I was at home. As soon as I heard about it, I reached
the site at 10.”, the first event (“at home”) and the second
event (“reached the site”) are both certain. However, what
happened between the two events is unknown. We call this
type of uncertainty between-even uncertainty

Uncertainty about the even taking place. In the WTC cor-
pus, we often encounter sentences like “I think Chief pulled
me back”. The word ‘think’ indicates an uncertainty about
whether the event has ever happened. Detecting this type of
uncertainty is difficult and beyond the scope of this paper.
Instead, we focus only on visualizing event uncertainty and
between-event uncertainty.

5. EVENT UNCERTAINTY
In this section, we discuss the extraction and visualiza-

tion of event uncertainty. To extract event uncertainty, we
compiled a list of English words that may indicate location
uncertainty, such as “around,” “near,” “close to,” “maybe,”
“perhaps,” etc. We then gave each word an uncertainty
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Figure 5: Three kinds of glyphs used to represent spatial, temporal and spatio-temporal uncertainty. Left:
Dashed I-beam is used to represent spatial uncertainty. The slope of the top and bottom of the beam
disambiguates the range of locations in the geographical space. Middle: parallel lines are used to denote the
temporal uncertainty. Right: Box showing spatio-temporal uncertainty. The slope of the edges of the box
maps to a fixed geographical area within a certain time.

score in the range of 1 − 100 [29][30][31]. The same pro-
cess was repeated for temporal information. We extracted
the named entities from WTC corpus using Stanford NER
[32] and time using SuTime [33]. TARSQI [34] was used to
extract the temporal sequence of the events, and locations
were geocoded using Google Maps API. The results were
then verified and corrected.

In the WTC corpus, we observed all three types of event
uncertainties: spatial, temporal, and spatio-temporal. Some
key events with precise spatio-temporal information were
used as anchor events. These include the first and second
plane hitting the tower, and the plane crashing into the pen-
tagon. These events were chosen as key events because all
of the interviews described more local events in reference to
these global events. Examples include “When the second
plane hit the tower, I was running towards Vesey,” and “I
was at the station when the news about the first explosion
was on TV.”When considering these key events in the con-
text of the first example, the time is certain but the location
is uncertain. Additionally, in a sentence that references no
key events like “When the EMS arrived at the scene, I began
heading south”, both location and time would be considered
uncertain.

For each event, latitude, longitude, date/time, color, spa-
tial uncertainty, and temporal uncertainty were fed to the
visualization program, which then visualized the uncertainty
information along with other information.

Spatial Uncertainty. Spatial uncertainty is visualized as a
vertical dashed I-beam. From Corollary 3.5, we know that
an area on a map corresponds to a line in Storygraph. The
length of the I-beam is proportional to the area of possible
locations. More importantly, the top and the bottom of the
beam disambiguate the range of locations in geographical
space. This is shown by the left sub-figure in Figure 5.

Temporal Uncertainty. We use sloped double lines to rep-
resent temporal uncertainty. Each double line is drawn along
the location line for the corresponding event, which can be
seen in the middle sub-figure in Figure 5. A double line
indicates that the event happens at a particular location
within a certain time frame. In contrast, a single solid line
along the location line means that the character stayed at
the specified location for a period of time. Through these
representations, the two cases are visually distinct.

Spatio-temporal Uncertainty. We use a semi-transparent

box to visualize spatio-temporal uncertainty, which means
both location and time are uncertain. The sloped top and
bottom sides of the box indicate the range of locations while
the vertical sides of the boxes shows the temporal bound.
The box is drawn as semi-transparent to prevent glyph oc-
clusion. This is shown by the right sub-figure in Figure 5.

Figure 6 shows this concept applied to the events ex-
tracted from WTC corpus.

6. BETWEEN-EVENT UNCERTAINTY
The purpose of visualizing between-event uncertainty is to

display the space-time constraints between two key events.
Any activity takes place within a certain span of time and
a certain geographical region. Individuals participating in
these activities have to trade time for space or vice versa.
For example, during a workday lunch hour a person could
walk to a nearby restaurant for a longer meal or drive to
distant restaurant for a shorter meal. Visualizing between-
event uncertainty can assist planning, scheduling, analyzing
possible overlapping in people’s activities.

Our between-event visualization technique is partially based
on Hagerstrand’s Time Geography, a conceptual framework
which focuses on constraints and trade-offs in the allocation
of time among activities in space [5]. However, Time Geog-
raphy is a map based 3D visualization. Therefore it suffers
from the typical problems associated with 3D visualizations,
such as 3D occlusion and difficulty of navigation. Besides,
space and time are not well integrated in Time Geography.
Our work is an attempt to address these issues.

6.1 Space-time paths and space-time prisms
We adapted two important concepts from Time Geogra-

phy: space-time paths and space-time prisms. Space-time
path traces the movement of a character in space and time.
Figure 7 shows an example of a space time path adapted
from [5]. The base plane is the geographical space and the
orthogonal axis is time. In this example, an individual trav-
els from location 1 to 2, spends some time at 2 and then
moves on to 3. The time and location of the starting or end
point are known as control points or key events. The straight
line segments connecting two control points are known as
path segments. Path segments are represented by straight
line segments for simplicity [35][36]. In our earlier work, we
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Figure 6: Storylines of four firefighters before the second tower collapsed along with event uncertainty. The
dashed vertical I-beam shows the spatial uncertainty. The slope of the top and bottom portion of the beam
shows the possible range of locations. The parallel lines show temporal uncertainty. The boxes represent
spatio-temporal uncertainty and the circles show certain events.

Figure 7: An example of space time path adapted
from [5]. Space time paths trace the movement
of an individual moving from one location to an-
other. Space-time paths also show the amount of
time spent at a location by the individual before
moving to the next location.

adapted the concept of space-time paths in Storygraph us-
ing storylines[1]. Here, Storylines become space-time paths,
connecting two consecutive key events via dotted line seg-
ment.

Space-time prisms extend space time paths to create a 3D
space consisting of all the possible routes an individual can
take while moving from one point to another. This space is
known as the potential path space. The prism between t1 and
t2 in Figure 8 demonstrates this concept. The slope of the
edges of this prism is determined by the inverse of maximum
velocity. That is, the possible paths are constrained by the
maximum velocity of the individual, a fixed time frame, and
fixed destinations. In our implementation, the maximum
velocity is set by the user.

If an individual is at origin, o, at to and needs to reach

destination, d, at td, the time budget is T = td − to. The
path space from the origin under the time budget is shown
by the red inverted dotted cone. This space shows all the
possible paths and all the possible locations that can be
reached within the time budget with maximum velocity v.
Let this region be denoted by Ro(T ). Similarly, the blue
dotted cone shows the path space towards d under the time
budget. This 3D space gives all the locations from where
d can be reached under time T . Let this region be Rd(T ).
The intersection of these cones give the potential path space
for individual traveling from o to d [37]. Hence,

Rod(T ) = Ro(T ) ∩Rd(T ) (9)

The projection of the space time prism on the geographical
space, as shown by a gray circle in the figure, shows all the
possible locations that the user can reach. This area is called
the potential path area.

Given all the control points within a specific time window,
τ , the construction of space-time prism requires the desti-
nation d to lie within the Ro(T ) and vice versa. Stating it
formally,

∀o, d ∈ φτ : (o ∩Rd(T )¬∅) ∧ (d ∩ Ro(T )¬∅) (10)

In Time Geography, space-time paths and space-time prisms
are generally drawn inside a 3D space-time cube [38] (Fig-
ure 8). In our work, space-time paths and space-time prisms
are drawn on Storygraph in a 2D view.

6.2 Visualizing between-event uncertainty
Storygraph draws space-time prisms based on Equations 9

and 10. From Corollary 3.5, we know that an area in the
geographical space is mapped to a line in Storygraph. Thus
starting from a location, o(α, β), at t0 and taking a snap-
shots of the potential path area at each time step we get a
set of areas sequentially increasing at the rate of the velocity.
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Figure 8: Space-time prism. In this figure, the indi-
vidual is at location o at t1 needs to be at the same
location d at t2 (o origin of travel ). (S)he has the
time budget of T . The red dotted cone shows the
possible path space starting from o with the max-
imum velocity, v. Similarly the blue dotted cone
shows the path space towards d. The intersection of
these two cones gives the potential path space under
the given time budget T . The potential path area is
shown by the gray area on the geographic space.

The top sub-figure in Figure 9 shows an individual at point
(α, β) at t0 and his/her possible path area after each time
step t1 − t5. The figure simplifies the drawing of the po-
tential path areas by representing them with squares rather
than circles. The bounding of the actual potential path by
squares introduces some uncertainty itself [20] but greatly
simplifies the drawing and the calculations.

Hence, if the time step, ∆t → 0, then conical region Ro(T )
would be reduced to a triangular region in Storygraph. This
region is shown by the area enveloped by two gray lines in
the bottom sub-figure in Figure 9.

Figure 10 shows the result of mapping the space-time
prism in Figure 8 in Storygraph. The mapping process
resembles the drawing of the space-time prism inside the
space-time cube. Given two control points, maximum ve-
locity and a time budget, these parameters are plugged into
Equation 10 to check whether the control points satisfy this
criteria. If the criteria is satisfied, we compute the extents
(latmax, lngmax) and (latmin, lngmin) of the Ro(T ) with the
following sets of equations,

latmax = maxlatr [
√

(latr − lato)2 + (lngr − lngo)2 = vT ] (11)

lngmax = maxlngr [
√

(latr − lato)2 + (lngr − lngo)2 = vT ] (12)

latmin = minlatr [
√

(latr − lato)2 + (lngr − lngo)2 = vT ] (13)

lngmin = minlngr [
√

(latr − lato)2 + (lngr − lngo)2 = vT ] (14)

Similarly, the extents for the Rd(T ) is calculated. Finally,
Rod(T ) is obtained from the intersection of these regions.

6.3 Intersections of prisms in Storygraph
Space-time paths and prims are both based on the move-

ment data of characters. Given a dataset containing the
movement data of two or more individuals, it is likely that

Latitude Longitude

Time

� �

Longitude

Latitude

Time

t1

t2

t3

t4

�

�

t5

t0 t2 t3 t4 t5t1

Figure 9: Above: Starting from the origin of travel,
α, β, at t0, the potential path areas in each time step
t1− t5 (assuming a certain velocity and regular time
intervals). Below: The same data plotted in Story-
graph. Each potential path area is mapped to a line
segments in Storygraph. For continuous time, this
would result in an area enveloped by two gray lines.
The slope of the gray lines is equal to the maximum
velocity.

the space-time prisms will overlap. However, since Story-
graph does not preserve event proximity (Lemma 3.6), it is
important to note that these overlaps may not necessarily
mean that these prisms intersect in geographical space.

Hence, given a point p and a prism Ra(T ) in the Sto-
rygraph, we first establish the conditions for a valid point-
prism intersection. Building on this, we then present the
validity of intersection between two prisms.

Let Ra(T ) : Ra(T ) = Ro(T ) ∪ Rd(T ), be all the possible
locations that the individual can travel within the time bud-
get T with a maximum velocity v. Then following cases for
point-prism intersection could arise:

1. The point is not inside the prism but the location line
is inside Ra(T ). This case implies that the event oc-
curred within the geographical bounds but the indi-
vidual may not have been involved in the event due to
the travel constraints.

2. The point is inside the prism but the location line is
not inside Ra(T ). This implies that the event occurred
within the time span, T , but at some other location
6∈ Ra(T ).

3. The point is inside the prism and location line is inside
Ra(T ). This is the only case where the individual could
have been involved in the event.

Theorem 6.1. For a valid point-prism intersection, the

point should be inside the prism and the location line should

lie inside Ra(T ).
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Figure 11: Storylines of WTC victims Chief Ganci and Father Judge. Father Judge was officially identified
to be the first victim of the incident. Only a few key points have prisms between them. For other key points,
the distance between them cannot be travelled within the given time at a velocity set by the user. This could
either mean missing data points, change in velocity, or data reporting error.

Latitude Longitude

Time

� �

t1 t2
T

potential path space

potential path area

o d

v

Figure 10: The space-time prism shown in Figure 8
drawn in Storygraph.

Proof. Assume that this is not a valid intersection. It
means that the point representing the event is either spa-
tially or temporally incorrect. This is temporally incor-
rect because for a point to lie inside the prism, it has to
occur within the time budget. This is spatially incorrect
since Ra(T ) defines the maximum distance an individual
can travel at within a time T .

Hence, given two prisms, P1 and P2, the prism-prism
intersection is only valid if there exists a point p on location
line l such that l ∈ RP1

a (T ) ∧ l ∈ RP2

a (T ) ∧ p ∈ P1 ∩ P2.

7. CASE STUDY: WTC 9/11

In the immediate aftermath of the attacks in New York on
September 11, 2001, the NYC Fire Department convened a
task force to interview first responders to the affected areas.
These 511 interviews, conducted in the two months follow-
ing the attacks, were later released by the New York Times.
Each interview was conducted by staff from the New York
Fire Department assigned to the task force and ran any-
where from 8-20 minutes with the aim to elicit from first
responders their activities on September 11. The language
of the reports is typical of event interviews and oral histo-
ries. Despite having a population with high area knowledge
and normalized reporting practices, locations and times were
predominately referred to referentially. Known individuals
seen by the interviewee are named, but most are either not
named or referred to solely by rank. The primary reason
to visualize this data is to enable historians and investiga-
tors to identify accurate and inaccurate information and to
allow for more ready recognition of corroborating evidence.
When viewed as a corpus rather than separate interviews, it
becomes possible to identify overlaps in the reported events
of the witnesses. The challenge posed to this task by the ref-
erential language usage of the witnesses is pervasive in oral
history and other investigatory work reliant on interviewing.

Event Uncertainty Visualization. Time, location, and char-
acters (or people) in this corpus were extracted using Java
code and the aforementioned natural language processing
tools. Each event was given an uncertainty score using the
method described in Section 5. We first drew a Storygraph
without uncertainty information (Figure 2). In this figure,
key events – such as when the first and second plane hit and
when the towers collapsed – are shown by t1− t4. There are
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many co-occurring events around 15 : 00 hrs, but the causes
of these patterns are not yet clear.

Next, we plotted the storylines of four fire fighters before
the South Tower collapsed with event uncertainty (Figure 6).
It should be noted that two storylines crossing does not
necessarily mean the two characters encounter each other;
rather, it only means that two people were moving in direc-
tions diagonal to each other. One limitation of using un-
certainty glyphs is that they might result in occlusion and
ambiguity for large datasets. When the dataset is large, the
bigger glyphs (e.g. the ones representing spatio-temporal
uncertainty) could occlude the smaller ones.

Between-event Uncertainty Visualization. Figure 11 visu-
alizes the between-event uncertainty for two victims: Father
Judge and Chief Ganci. The space-time prisms in Story-
graph enable users to see the possibilities of individuals en-
countering each other between key events. There are two
patterns in this figure: (1) the prisms are only present be-
tween some key events, and (2) some prisms overlap. The
first pattern indicates that locations of the two events are
too far apart in that it would be impossible for a person to
cover that distance at the maximum velocity. It does not
necessarily mean that part of the story is false; rather, it
may be the result of missing information between two events
or uncertainty in the events themselves. From overlapping
prisms (from Theorem 6.1), we can also deduce that Chief
Ganci and Father Judge might have encountered each other
within that time frame and region.

8. CONCLUSION
In this paper, we presented a new method for visualiz-

ing uncertainty in spatio-temporal data set. This method
is an extension of our previous work Storygraph, a visual-
ization technique for displaying spatio-temporal data sets
in an integrated 2D view. Our method can visualize both
temporal-spatial uncertainty about an event and the uncer-
tainty between events. This extended method provides more
accurate and faithful visualization of spatio-temporal data
sets with inherent uncertainties. In addition, between-event
uncertainty visualization can help users analyze the feasi-
bility of spatio-temporal events and possible encounters be-
tween multiple characters. We demonstrated this method in
a case study.

In the future we plan to conduct user studies to evaluate
the effectiveness of this method and compare it with other
methods. We also plan to investigate new methods to ana-
lyze and visualize uncertainty in the identification of people
or groups.
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[36] José Moreira, Cristina Ribeiro, and Jean-Marc Saglio.
Representation and manipulation of moving points: an
extended data model for location estimation.
Cartography and Geographic Information Science,
26(2):109–124, 1999.

[37] Tijs Neutens, Nico Weghe, Frank Witlox, and Philippe
Maeyer. A three-dimensional network-based
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ABSTRACT

The analysis of news impact on people is relevant to a variety of
applications, ranging from monitoring product and companies rep-
utations, to stock market prediction. Therefore, it is important to
understand the underlying mechanisms which affect the propaga-
tion of news and drive the evolution of sentiments in one way or
another. In this demonstration paper, we describe NIA, a system
that identifies and describes news events that caused changes of
sentiments. NIA is based on a novel framework for a complex news
event modeling, which is capable of detecting time and importance
characteristics of events by only observing a time series of news ar-
ticles publications, and then correlating this data with a time series
of sentiment shifts. The operation of our system is summarized as
follows. First, we apply a deconvolution to recover the time, longi-
tude, importance and impact of news events. Second, we compute
a sentiment time series, e.g., by monitoring sentiments for positive
or negative bursts, and coherently analyze sentiment and news time
series, automatically determining their time lag. Third, we evalu-
ate the corresponding news articles for a time interval of interest
and extract the essence of what happened. Finally, we present the
selected news time series to the user, as well as several more corre-
lated stories, which could have affected sentiments as well, propos-
ing to interactively explore their connections.

1. INTRODUCTION
Today, sentiment analysis has become a platform that provides

valuable information on people’s opinions regarding different top-
ics, and is widely used by businesses and social study institutions [6].
By aggregating sentiments, expressed in multiple texts, and assess-
ing the result with statistical measurements, we can capture certain
changes, or shifts, in global sentiment, which cannot be attributed
to random variation [5]. Recent studies indicate that the observed
sentiment changes can be the result of people reacting differently
to external events [4, 7], opening this problem for the investigation.

In this demo, we aim at determining the impact of news events
on sentiment changes. However, most of the news events are an-
nounced as atomic pieces of information and their importance is
not readily intelligible from the text alone. To determine the im-
portance and impact of news to people, it is crucial to consider the
relevant publication dynamics of the whole crowd, rather than only
from news agencies or news media. Whats more, it is important
to analyze all types of sentiment shifts, which could be connected
with news events. The problem is that relevant sentiment shifts can
be particularly small and can occur before, during or after the event
- all with varying delays, depending on the event type and publica-
tion pace of the media. This necessitates the sophisticated news and
sentiment extraction, aggregation and tracking methods, as well as
proper correlation measures between news and sentiments.

Such problems require processing significant amounts of data
to produce a desired output, from sentiment extraction to event
processing. However, the most challenging part of our problem
is finding relevant pairs of news events and sentiment shifts, be-
cause there is usually no one-to-one correspondence between the
event and sentiment shift types, and there can also exist multiple
correlated topics, which contribute to sentiment deviations. At this
step, the interaction with the user in order to pick up such cases
can be very beneficial, since the system can quickly filter through
the correlated topics, but only human can understand the semantic
connection (and causality) between events and sentiments.

This demonstration features NIA [7] - a system for news and sen-
timent analytics, which monitors important news events, evaluates
their dynamics, and captures the correlated sentiment changes. Our
system aims to predict which event types are likely to cause the sen-
timent to change by analyzing news importance and dynamics and
letting the user to explore the connections between time series of
sentiment shifts and news events for correlated topics.

The NIA system relies on principled techniques and approaches
to news and sentiment aggregation and analysis: (a) we employ au-
tomated parameter optimization for processing time series, detect-
ing news events and measuring their characteristics; (b) sentiment
noise and irregularity are reduced by regression smoothing, taking
into account the diversity and significance of sentiments.

Motivating Scenarios and Examples:
Example 1: We want to detect changes in the opinion on a par-

ticular topic, when such changes are caused by news events. For
instance, imagine the situation demonstrated in Figure 1, in which
the sentiment expressed in Twitter for the Large Hadron Collider
(LHC) has dropped from positive to negative just after the first ex-
periments begun. In our example, we see that people started to
talk negatively in the aftermath of the first experiments (marked
“collision"), while the news about the record beam energy (marked
“record energy") pushed sentiments back to neutral. To understand
the difference between these two events we need to navigate to a
correlated news trend and analyze the volume of news around these
sentiment changes. However, proper news event detection and pro-
cessing require special methods, as shown in our next example.

28.09.2009 12.10.2009 26.10.2009 09.11.2009 23.11.2009 07.12.2009 21.12.2009
0E0-1.0

-0.5

0.0

0.5

1.0

funding issue

wired article

problem

operational

bird baguette

first beam collision

record energy

Figure 1: Sentiment shifts for the topic "LHC" from Twitter.
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Figure 2: Events identified by deconvolution for “iPad”.

Example 2: Consider a search interest time series extracted from
Google for the topic “iPad”, shown in Figure 2, blue. It features a
growing number of search queries overlaid with a series of over-
lapping bursts of user interest, making it very hard to detect news
events. For instance, the relative difference in interest between
“iPad 2" and the following “US Sales" events is obstructed by
the trend, which makes their volumes appear similar. The output
time series of events (Figure 2, red), processed using our method,
demonstrates a more vivid event separation, making them easily
detectable. Moreover, it appears without the global trend, revealing
true event importance and dynamics.

2. NEWS IMPACT ANALYTICS
Our system for news impact analytics, NIA [7], addresses the

problems of detecting interesting changes of aggregated sentiment
and connecting them to relevant news events which could have
caused these situations. In this section we briefly introduce the
main capabilities and design principles of NIA, proceeding with the
description of its main features and the demonstration scenario in
Section 3.

2.1 System Overview
Figure 3 outlines the composition of NIA. It consists of Senti-

ment Analysis and News Event Analysis layers, which analyze ag-
gregated sentiment data and news volume as described below. The
sentiment analysis layer takes care of aggregating sentiments for
a topic and detecting interesting changes, which can be contradic-
tions, outbursts of sentiments’ volume or other changes in senti-
ment happening over time. The news event analysis layer works
with time series of publication volume (which can be news, blog
posts, tweets) to detect various events that could have caused the
observed shifts in sentiment. Events are detected with the help of
deconvolution, through observing outbursts in news volume, and
are annotated automatically by summarizing relevant news articles.

Figure 3: Compositional diagram of the system.

2.2 Sentiment Analysis
We determine topic T and sentiment S for each text and assign a

continuous sentiment value S in the range [-1;1] that indicates the
polarity of the opinion expressed regarding the topic. For the senti-
ment assignment step, we use the SentiStrength [4] tool, which rec-
ognizes opinion expressions, emoticons and works especially well
for short texts, like tweets.

For analyzing news impact, we are interested in sentiment mea-
sures that are sensitive to particular kinds of sentiment changes,
usually correlated with events. However, not many studies propose
suitable measures for opinion shifts, which can be analyzed coher-
ently with the news time series in order to extract correlations. The
particular methods which can be adopted to our problem are senti-
ment volume [4] and contradiction level [8], discussed below.

Sentiment Volume is defined as the amount or the sum of sen-
timents of a particular polarity, expressed within a specified time
interval [4]. It captures bursts of particular opinions, e.g., positive:

s(t) =
n

∑
i=1

S+i (t), or s(t) = |S+i |(t)

Contradiction Level is another suitable measure for sentiment
shifts, that can detect both changes of sentiment polarity as well as
temporary shifts of sentiments [8]. The intuition behind this mea-
sure is that when the aggregated value for sentiments µS is close
to zero, while the sentiment diversity (variance) σ2

S is high, then

the contradiction should be high. Combining µS and σ2
S in a single

formula, we propose the following measure for contradictions:

s(t) =
ϑ ·σ2

S

ϑ +(µS)2
W (n),

where n is the number of sentiments, ϑ != 0 is the normalizing con-
stant, and W is a weight function that takes into account the signif-
icance of sentiment statistics involved in the calculation [8].

2.3 News Event Analysis
We consider that sentiment changes can be preceded with or fol-

lowed by news events. A time lag between the two sequences can
be determined by maximizing their cross-correlation coefficient. It
can then be used to navigate to the relevant news event, given a time
interval of sentiment shift, annotating it with the keyword descrip-
tion and importance dynamics.

Extracting News Time Series. An example time series of news
volume is shown in Figure 2. It consists of a series of bursts of vary-
ing height and length, which can even be overlapping. Constructing
the news volume time series n(t) for a specific topic involves the
analysis of documents in the collection D and estimation of topic’s
popularity (frequency) among them. For example, we can count
a number of documents Di which have occurrences of the topics’
keywords T , or sum their TF-IDF scores:

n(t) = |DT |t = {Di ∈ D | T ∈ Di}; n(t) = ∑
Di∈DT

TF-IDF(T,Di)|t

Detecting Impacting Events. As we already noted, not every
kind of publications outbursts is caused by external news, and not
every kind of news dynamics has an impact on sentiment, so we
want to distinguish them at a fine level of detail, for instance, distin-
guishing between linear, hyperbolic or exponential response types,
either symmetric or asymmetric, depending whether events are an-
ticipated or not. Our system represents news publication volume
as the result of the interplay between the original news’ importance
e(t) and media response mr f (t), in a process known as convolution.
In order to recover e(t), we perform a deconvolution of news vol-
ume time series, using Fourier transformation, as described in [7]:

e(t) = F
−1{e(ω)} = F

−1{n(ω)/mr f (ω)}

Unlike other models [2, 1, 3], describing publication dynamics by
complex equations, deconvolution uncovers succinct and meaning-
ful event parameters in the form of e(t), such as: event’s interest
buildup and decay, its longitude and maximum importance level.
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Extracting Event Annotations. To automatically annotate news
event, we compare TF-IDF scores of the news documents within a
current time interval to the same scores over the entire collection of
news, and extract top k terms, which became more popular in the
event time interval DT

e :

Tevent = {Tj | maxk(TF-IDF(Tj,D
T
e )−TF-IDF(Tj,D

T ))}

Correlating News and Sentiments.
We observe that sentiment and news time series require spe-

cial correlation methods, that are different to conventional Pear-
son cross-correlation coefficient, which measures the linear depen-
dency between variables. Such time series do not have a definite
average level, around which the movement is happening. Instead,
their values are outbursting from the minimum level at particular
points in time. Therefore, we apply binary similarity measures, for
example cosine similarity or Jaccard coefficient, measuring the in-
tersection between sentiment and event bursts. In addition to count-
ing the number of overlapping bursts, we can apply their weighting,
for example based on magnitude.

3. DEMONSTRATION SCENARIO
Our system is capable to detect sentiment shifts in multiple time

series and correlate them with news events in real time. In this
demonstration, we intend to show the main features of our system
on the real dataset from Twitter, by applying NIA on the stored data
flow and giving users a possibility to visualize and explore news
events, along with their sentiment changes, automatically extracted
in real time. The important feature of our system is that it assigns
sentiment changes to events on the same topic automatically based
on their correlation, and also allows user to explore and suggest
events from other related topics.

Demonstration Dataset. For our demonstration dataset, we se-
lected 30 trending topics from Twitter, which featured the most
prominent events for the period of half a year, from June 2009
till December 2009. The dataset contains approximately 7 million
tweets in total and over 400 peaks during the events. We use 1-day
aggregation for the time series of tweets volume and sentiments.
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c) Sentiments of the selected interval

0.20 Another day ends without the world ending in something much louder than a whimper.

0.20 Rags ’n Ram: First Collisions at the LHC! http://ragsnram.com/?p=1576

0.60 I favorited a YouTube video – Spotlight On CERN - The LHC Is Back!

1.00 RT @WilliamOrbit: CERN animation ’The Bottle to Bang’ – factual and impressive. ^_^

-0.40 Large Hadron Collider at CERN repaired and running. So, what does that mean.

0.80 We have been in VT for 1 Year! A Circle to Celebrate!

0.20 Notice in the pic, the LHC is getting more green bars. Maybe collisions soon?!

0.60 YAY, the LHC is working, and we’re not dead! =P

-0.40 Cern has stated their concerns that he may implode and cause a black hole.

0.60 This is a kinda old news, but it got me excited a little when I read: CERN and proton collisions

-0.40 Laughing at: User Friendly: conCERNed: the game of fixing the LHC and avoiding the blame

Figure 4: NIA demo workflow for the topic "LHC" from Twitter.

Demonstration Workflow. We intend to demonstrate an inter-
active application, shown in Figure 4, which allows users explor-
ing news time series for each of the topics in our dataset, visualize
the corresponding sentiments, drill down to the actual positive and
negative posts, and see which other relevant news events could have
affected sentiments, based on correlation analysis. Users can inter-
act with the system by selecting and zooming time series, and also
by adjusting various parameters, such as aggregation granularity,
smoothing level and correlation thresholds, in real time.

Our demo starts by displaying to users a graph with the news
volume, as seen in Figure 4(a). In this graph, NIA automatically ex-
tracts and annotates the relevant news events. Moreover, it marks
the related sentiment shifts near text event annotations. The user
can also visualize the entire time series of average sentiment, con-
tradiction level, positive or negative sentiment volume, which in
this case also become annotated with sentiment shifts and event la-
bels, shown in Figure 4(b). In cases, when events cause transitions
of sentiments (from positive to negative or vice verse), event an-
notations are marked with the two corresponding arrows, as seen
in events marked as “collision" and “record energy". Finally, by
clicking on the interesting time interval, users are able to see a time
series of posts, marked with positive (green) and negative (red) sen-
timent labels, as shown in Figure 4(c) for the event “first beam".

4. CONCLUSIONS
Our system allows correlated analysis of sentiments and news,

and raises new data analysis opportunities, useful for sociology
and marketing researchers. Our evaluation reveals the existence of
different parameters for various events, even for the same topic,
all having different impacts on sentiments, suggesting that it is
possible to predict sentiment changes. To achieve this, we need
to take into account the type of response dynamics in addition to
the event’s importance level, creating a more elaborate causality
model. This task requires building a database of event and sen-
timent shift profiles, and exploration of events on related topics,
in addition to events on the same topic, leading to the necessity for
employing a sophisticated and interactive analytics platform, which
helps users in their search for event causality. The purpose of our
demo system is to facilitate the development of such a platform and
explore possible ways of interactive news and sentiment analysis.
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