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Abstract Discretization is the transformation of continuous data into discrete bins.
It is an important and general pre-processing technique, and a critical element of
many data mining and data management tasks. The general goal is to obtain data that
retains as much information in the continuous original as possible. In general, but in
particular for exploratory tasks, a key open question is how to discretize multivariate
data such that significant associations and patterns are preserved. That is exactly the
problem we study in this paper. We propose IPD, an information-theoretic method for
unsupervised discretization that focuses on preserving multivariate interactions. To this
end, when discretizing a dimension, we consider the distribution of the data over all
other dimensions. In particular, our method examines consecutive multivariate regions
and combines them if (a) their multivariate data distributions are statistically similar,
and (b) this merge reduces the MDL encoding cost. To assess the similarities, we
propose ID, a novel interaction distance that does not require assuming a distribution
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and permits computation in closed form. We give an efficient algorithm for finding the
optimal bin merge, as well as a fast well-performing heuristic. Empirical evaluation
through pattern-based compression, outlier mining, and classification shows that by
preserving interactions we consistently outperform the state of the art in both quality
and speed.

Keywords Discretization · Interaction preservation · Pattern mining ·
Outlier mining · Classification

1 Introduction

Unsupervised discretization is a crucial part of many knowledge discovery tasks
and widely used as a pre-processing step in modern data management. Examples
where we find discretization under the hood include selectivity estimation (Gunopu-
los et al. 2000; Tzoumas et al. 2011), entropy-based schema extraction (Yang et al.
2009, 2011), density estimation for subspace mining (Müller et al. 2009), subgroup
discovery (Grosskreutz and Rüping 2009; Lemmerich et al. 2013), and correlation
analysis (Reshef et al. 2011). In addition, there exist many tasks that require discrete
data as input, such as a wide range of pattern mining algorithms (Han et al. 2007), as
well as correlation measures using Shannon entropy, such as mutual information and
total correlation (Cover and Thomas 2006).

Not only useful for when discrete data is required, unsupervised discretization
has increasingly found its way into many areas that traditionally consider continuous
data. For example, clustering (Agrawal et al. 1998; Moise and Sander 2008) and outlier
detection (Aggarwal and Yu 2001; Akoglu et al. 2012) use discretization techniques
for unsupervised learning on multivariate data. In face, any method that works with
decision boundaries on continuous domain needs or performs discretization; be it
explicitly or implicitly (Grosskreutz and Rüping 2009).

In general, unsupervised discretization aims at transforming continuous data into
discrete bins without prior knowledge about any patterns hidden in the data. Well-
known examples include equal-width and equal-frequency binning, as well as meth-
ods that optimize the binning w.r.t. univariate the data distribution (Kontkanen and
Myllymäki 2007). Considering only a single dimension, all of these methods fail
to preserve interactions among multiple dimensions, i.e., they may unwittingly cut
a multivariate distribution into many parts and so destroy essential characteris-
tics of that data. In contrast, we propose to focus on interaction-preserving dis-
cretization (IPD) and exploit dependencies among dimensions for better multivariate
discretization.

To show the importance and difficulty of IPD, let us consider an example where it is
impossible to find correct cut points by univariate discretization. Consider the simple
toy example in Fig. 1. It features a 3-dimensional data set with 4 clusters. There are
interactions among dimensions X1, X2, and X3. The clusters are only detectable when
all dimensions are considered together. For illustration purposes, we assume that X1
initially has 4 bins: b1, b2, b3, and b4. To discretize this data set while preserving all
clusters, one should discretize X1 into two bins (X1 < 0 and X1 ≥ 0), and similarly
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(a) (b)

(c) (d)

Fig. 1 Example of the parity problem. There are 4 clusters in (X1, X2, X3) marked by different colors.
The correct discretization: one cut point at 0.0 for each dimension (Color figure online)

for X2 and X3. Univariate methods, however, will place cut points randomly w.r.t. the
multivariate distribution of the data, and will hence fail to preserve the interactions
and clusters. Our method, on the other hand, does identify the correct cut points in all
dimensions.

In general, although many real-world applications require multivariate discretiza-
tion, and while discretization in general is a classic problem, IPD is very much an open
research problem. In our work, we introduce a novel discretization approach that aims
at preserving interactions. By interaction preservation we mean that two multivariate
regions should only be in the same bin if and only if the objects in those regions have
similar multivariate joint distributions in the other dimensions. That is, we enforce
each bin to only contain data of similar distributions. For instance, in Fig. 1, bins b1
and b2 should be merged because the distributions of X2 and X3 in the two bins (see
Fig. 1c) are similar.

Due to its generality, this problem statement gives way to several open research
questions. First, it is unclear how to measure the difference between multivariate dis-
tributions in different bins without assuming an underlying distribution. Well-known
measures such as Kullback-Leibler divergence (Cover and Thomas 2006) and Earth
Mover’s Distance (Peleg et al. 1989) require assumptions on the data distribution. Sec-
ond, one needs a bin merge strategy that balances how well interactions are maintained
with the level of detail of the discretization. Third, the search space of all possible dis-
cretizations is potentially exponential to the number of data points. As a result, one
needs efficient methods to find good discretizations.
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With our method, IPD, short for interaction-preserving discretization, we tackle
each of these problems. It performs multivariate discretization in the sense that it
discretizes one dimension while preserving its interactions with all other dimensions.

More in particular, we propose to assess the similarity between multivariate distri-
butions in different bins through a new interaction distance, or ID for short. It works
on cumulative distributions and hence does not require any prior assumption on the
data distribution. In addition, its computation on empirical data is in closed form, and
we prove that it is a metric distance. This ensures easy-to-interpret distance values and
reliable assessment of multivariate distributions.

As the second main ingredient of IPD, we define the task of multivariate discretiza-
tion in terms of the minimum description length (MDL) principle (Rissanen 1978). By
optimizing the resulting objective function, IPD is able to balance between preserving
dimension interactions and information of the underlying dimension.

Third, we give two efficient methods for finding good discretizations. The first
strategy finds the optimal bin merge by dynamic programming, while the second is a
fast greedy heuristic. Though both algorithms have the same theoretical complexity,
the latter is by far the faster in practice, while providing very high quality results—in
fact, we formally prove that it is a (2− ε)-approximation of our optimal strategy.

Empirical evaluation of IPD on a wide range of real and synthetic data, and unsu-
pervised and supervised tasks including pattern-based compression, outlier mining,
and classification clearly shows IPD to consistently outperform the state of the art in
both quality and speed. In short, our main contributions include:

(a) General notions and a set of abstract desiderata for interaction-preserving multi-
variate discretization.

(b) The first interaction distance for quantifying the (dis-)similarity of multivariate
distributions over bins, specifically designed for continuous data and computed
in closed form on empirical data.

(c) An MDL-based framework for finding a balance between complexity and inter-
action preservation of a discretization.

(d) Efficient algorithms for discretization, including an optimal solution based on
dynamic programming, and a greedy (2− ε)-approximation.

The road map of this paper is as follows. We start by general notions and a set of
abstract criteria for interaction-preserving discretization. In Sect. 3 we review related
work. Afterward, we introduce IPD, which consists of ID, our new interaction distance
(Sect. 4), our MDL-based framework for multivariate discretization (Sect. 5), and
efficient algorithms (Sect. 6). We empirically evaluate IPD in Sect. 7. We round up
with discussion in Sect. 8 and finally conclude in Sect. 9. For readability we postpone
the proofs of all theorems to Appendix.

We make our code available for research purposes.1

1 http://www.ipd.kit.edu/~nguyenh/ipd/.
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2 General notions

We consider a database D of n objects and m dimensions. Each dimension Xi ∈ A,
where A = {X1, . . . , Xm}, is considered as a continuous-valued random variable. We
denote the domain of Xi on D as [mini , maxi ]. We write p(Xi ) for the probability
density function (pdf) of the database projected on Xi . Further, we write p(xi ) for
p(Xi = xi ). All logarithms are to base 2, and by convention 0 log 0 = 0.

A discretization of Xi into ki bins induces a set of cut points Ki = {c1
i , . . . , cki−1

i },
which partitions [mini , maxi ] into ki bins, [mini , c1

i ], (c1
i , c2

i ], . . . , (cki−1
i , maxi ].

To preserve interactions, two sets of objects should only be in the same bin if
they have similar multivariate joint distributions. That is, one should only consider
merging two consecutive bins Bg and B f of dimension Xi if the distributions of all
other dimensions, i.e., A\{Xi }, over the objects identified by Bg and B f are similar. In
such a case, we say the bins exhibit similar interactions with regard to the data. To tell
whether sets of objects should be in the same bin we need to quantify the interactions
of bins. We propose a general notion of interaction distance.

Definition 1 [Interaction Distance] Assume we want to measure the interaction dis-
tance between bins of dimension Xi over target variables {Y1, . . . , Yz}. In our set-
ting of unsupervised multivariate discretization, the target variables will typically be
A \ {Xi }, i.e., {Y1, . . . , Yz} = A \ {Xi }. Let Bi be the set of all possible bins on Xi .
An interaction distance should be applicable to any two bins of Bi . As such we have
G : Bi ×Bi → R

+
0 . In general, an interaction distance G(Bg, B f ) with Bg, B f ∈ Bi

quantifies the difference of the distributions over variables {Y1, . . . , Yz} in two bins
Bg and B f . The more different they are, i.e., the less Bg and B f interact, the higher
their interaction distance G(Bg, B f ) will be. Formally,

G
(

Bg, Bf
)
∼ diff

(
p
(
Y1, . . . , Yz|Bg) , p

(
Y1, . . . , Yz|Bf

))
.

In order to facilitate assessment of existing techniques, we introduce four desired
properties of meaningful interaction distances.

Property 1 (Unsupervised): G does not require labeled data.
Property 2 (Non-negativity): For any two bins Bg and B f , G(Bg, B f ) ≥ 0.
Property 3 (Zero interaction): G(Bg, B f ) = 0 if and only if the distributions of

{Y1, . . . , Yz} in Bg and B f are identical.
Property 4 (Non-parametric): G should not require prior assumptions on either dis-

tributions or correlations.

Properties 1 and 4 are mandatory to ensure the generality of the discretization scheme:
to be applicable for exploratory data analysis, to be applicable on unlabeled data, as
well as easily computable on empirical data. In particular, one should only use data
distribution functions that can be computed directly from empirical data with no prior
assumptions or given labels. Properties 2 and 3 guarantee that the distance properly
quantifies the difference in data distributions of any two bins.
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3 Related work

3.1 Univariate discretization

First, we consider univariate solutions, which include standard approaches such as
equal-width and equal-frequency binning, as well as state of the art methods such as
UD (Kontkanen and Myllymäki 2007) and its close cousin Bayesian Blocks (Scargle et
al. 2013). All of these methods discretize dimensions individually, without considering
other dimensions. By definition, they do not preserve interactions. As they neither
instantiate G, Properties 1–4 are not applicable.

Supervised techniques (Fayyad and Irani 1993; Kerber 1992) aim to preserve inter-
actions with a target class label. As such, they instantiate G(Bg, B f ) by the differ-
ence between the class label distributions of two bins. To measure this difference,
ChiM (Kerber 1992) employs χ2 test. By requiring prior information on class labels,
supervised methods do not match Property 1. More importantly, as only interactions
with class labels are preserved, the discretized data preserves only structure related to
the given class labels. In contrast, IPD aims to preserve all major interactions.

3.2 Multivariate discretization

Ferrandiz and Boullé (2005) proposed a supervised multivariate discretization tech-
nique. Though multivariate, its objective function is tightly coupled with the class
label distribution.

Kang et al. (2006) introduced an unsupervised multivariate technique based on
ICA. However, due to approximation (Seth et al. 2011), ICA transformation is not
guaranteed to preserve all important interactions. As a result, it is not guaranteed to
fulfill Property 3. Further, it does not meet Property 4 as it implicitly assumes the
dimensions to be non-Gaussian in the transformed space.

MVD (Bay 2001) instantiates G(Bg, B f ) by means of Stucco (Bay and Pazzani
1999), a contrast set mining algorithm. Two bins Bg and B f are considered similar if
no itemset can be found that separates the two. However, by considering continuous
values as items, the support of most itemsets is very low, which leads to high false alarm
rates. Hence, in general, MVD does not meet Property 3. CPD (Mehta et al. 2005)
transforms the data using PCA, mines itemsets on the eigenspaces of the bins, and
instantiates G(Bg, B f ) as the Jaccard coefficient between the resulting collections.
By using PCA it can only capture and preserve linear correlations (Lee and Verleysen
2007). As such, it may miss complex interactions, and is hence not guaranteed to
satisfy Property 3. In addition, neither MVD nor CPD are designed to work directly
with data distribution functions, and hence neither meet Property 4.

Both MVD and CPD employ a heuristic bottom-up approach as their binning strat-
egy. That is, two consecutive bins are merged if their interaction distance is low. As
such, the binning strategy of both MVD and CPD can be viewed as a hierarchical
clustering where no objective function is directly optimized. In contrast, univariate
methods UD (Kontkanen and Myllymäki 2007) and SD (Fayyad and Irani 1993)
search for bins based on the MDL principle (Grünwald 2007). That is, they seek the
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bins that yield the best balance between goodness of fit and model complexity. Their
encodings are designed for univariate discretization and hence only reward precision,
not the preservation of the multivariate interactions of the data.

3.3 Assessing dimension interactions

An interaction distance quantifies differences between two multivariate data distrib-
utions. In principle, one could use Kullback–Leibler divergence or a variant, such as
Jensen–Shannon divergence (Cover and Thomas 2006). To apply these, one needs to
assume a distribution, or estimate the multivariate pdf—which involves hard parame-
trization (Lee and Verleysen 2007). Advanced density estimation techniques such as
kernel methods (Silverman 1986) require selecting a kernel function and bandwidth.
Other popular measures include Earth Mover’s Distance (Peleg et al. 1989), which
requires a probability mass function.

In contrast, we employ cumulative distribution functions (cdfs), which do not
require assumptions on the data distribution and do not have free parameters. Further,
they can be computed in closed form. In theory, smoother estimates can be obtained
through cdf kernel estimation (Liu and Yang 2008). However, similar to pdf kernel
estimation, performance depends on the chosen kernel. In addition, though theoretical
optimal bandwidth selection exists, its realization needs estimation.

Interactions among dimensions can encompass different types of relationships
among dimensions; one of which is correlation. Various correlation measures have
been proposed to find correlations hidden in the data (Breiman and Friedman 1985;
Reshef et al. 2011), determine independence of dimensions (Rao et al. 2011; Seth et al.
2011), and search for relevant subspaces in high dimensional data (Cheng et al. 1999;
Nguyen et al. 2013). Our work here deals with unsupervised discretization and does
not directly address such correlation analysis. However, it benefits correlation analy-
sis in the sense that we also aim to preserve interactions among dimensions during
the discretization process. Further, many correlation measures are based on Shannon
entropy, and hence rely on discrete data. With multivariate discretization, we aim at a
general contribution to enhance a variety of techniques, e.g., mutual information and
total correlation (Reshef et al. 2011; Cheng et al. 1999), rather than proposing a single
solution (Nguyen et al. 2013) improving one specific notion of correlation directly on
continuous data.

3.4 Other related work

Lakshmanan et al. (2002) and Bu et al. (2005) studied grouping cells of data cubes
satisfying a given property, e.g., frequencies higher than a pre-specified threshold.
The methods are designed for cell properties for which the validation does not involve
other cells. In other words, they do not check if cells interact, and hence do not address
the issue of preserving interactions.

Aue et al. (2009) discussed detecting changes in multivariate time series. Their
problem setting is different from ours in two main aspects: (a) they focus on covariance
matrices, i.e., second-order pairwise interactions, and (b) break points signify changes
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in all dimensions, i.e., each set of cut points correspond to one data point. Philip Preuß
(2013) focus on a similar problem, but instead of covariance, targets autocovariance.
Like Aue et al. (2009), it is also constrained to pairwise interactions.

The work by Allen (1983); Allen and Ferguson (1994) discusses a representation
of time that uses temporal intervals as primitives. It can be used to derive intervals,
and for event change detection. While the exact relationship between events can be
unknown, some prior knowledge on how they could be temporally related is required.

4 Interaction distance

To construct IPD, we start by introducing our interaction distance, ID. Quickly going
over its properties, ID does not require any prior knowledge such as class labels and
hence satisfies Property 1. In the following we will prove that ID meets Properties 2
and 3, as well as show that ID is computed in closed form on empirical data, i.e., it
does not need to make any prior assumption on the data distribution. Therefore, it also
meets Property 4. The details of ID are as follows.

In principle, when discretizing Xi ∈ A, to preserve its interactions with all other
dimensions, we only consider merging two consecutive bins Bg and B f of Xi if the
distributions of A \ {Xi } over the objects identified by Bg and B f are similar. That is,
we instantiate G(Bg, B f ) by diff (p(A \ {Xi}|Bg), p(A \ {Xi}|Bf )).

Typically, the diff function measures the difference between two multivariate pdfs
corresponding to two consecutive bins of any dimension. Formally, we consider two
pdfs p and q defined on the set of variables A = {X1, . . . , Xm}. In practice, we want
to measure the differences over A \ {Xi }. For notational convenience, we however
write diff (p(A), q(A)) instead of diff (p(A \ {Xi}), q(A \ {Xi})). The domain of A is
Ω = [min1, max1] × . . . × [minm, maxm]. Though the analysis below considers all
dimensions, we note that our discussion holds for any A \ {Xi }.

To solve the problem of measuring diff (p(A), q(A)) we propose ID, a function for
quantifying the difference between distributions without requiring any prior assump-
tion. ID works with cumulative distributions that can be determined directly from
empirical data. That is, ID addresses Property 4. In particular, let P(A) and Q(A) be
the cumulative distribution function of p(A) and q(A), respectively. That is, for any
vector a = {a1, . . . , am} ∈ Ω , we have

P(a) =
a1∫

min1

. . .

am∫

minm

p(x1, . . . , xm)dx1 · · · dxm

and similarly for Q(a). We define ID as follows:

Definition 2 [Interaction Distance ID] The interaction distance ID between p(A) and

q(A), denoted as ID(p(A) || q(A)), is defined as

√∫

Ω

(P(a)− Q(a))2da.

In other words, ID quantifies the difference between p(A) and q(A) by (a) integrat-
ing the squared difference of their respective cumulative distributions, and (b) taking
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the square root of this integral. From Definition 2, we can immediately derive the
following theorem:

Theorem 1 ID(p(A) || q(A)) ≥ 0 with equality iff p(A) = q(A).

Based on Theorem 1, ID meets Properties 2 and 3. Further, we prove that ID satisfies
the triangle inequality. Let r(A) be a pdf defined on A and R(A) is its cdf.

Theorem 2 ID(p(A) || r(A))+ ID(r(A) || q(A)) ≥ ID(p(A) || q(A)).

Following Theorems 1 and 2, and the fact that ID is symmetric, we conclude it is a
distance metric. This characteristic ensures easy-to-interpret distance values, as well as
reliable assessment of multivariate distributions. Another advantage w.r.t. multivariate
discretization is that its measurements on empirical data can be described in closed
form. Assume that the empirical data forming p(A) contains data points {R1, . . . , Rk}
of D. Analogously, we denote {S1, . . . , Sl} as the data points forming q(A). For each
R ∈ {R1, . . . , Rk}, we write Ri for R projected onto the dimension Xi . We define Si

similarly for any S ∈ {S1, . . . , Sl}. We have:

Theorem 3 ID(p(A) || q(A)) equals to

⎛
⎝ 1

k2

k∑
j1=1

k∑
j2=1

m∏
i=1

(
maxi −max(Ri

j1, Ri
j2)
)

− 2

kl

k∑
j1=1

l∑
j2=1

m∏
i=1

(
maxi −max(Ri

j1, Si
j2)
)

+ 1

l2

l∑
j1=1

l∑
j2=1

m∏
i=1

(
maxi −max(Si

j1 , Si
j2)
)⎞
⎠

1/2

.

By Theorem 3 we can compute ID directly on empirical data in closed form, without
assumptions on the data distribution. That is, ID meets Property 4.

In the remainder of this paper we will use ID to implement diff in Definition 1.
In particular, we set diff (p(A), q(A)) to ID(p(A) || q(A)), and will employ it in our
practical score (Sect. 5.2) for identifying good IPDs.

5 Identifying the optimal discretization

Our overall goal is to find a discretization that balances preserving interactions and
detail of the data. We introduce a global objective function for identifying the opti-
mal multivariate discretization—which can be used to compare fairly between any
discretization—and a practical variant that allows for easier optimization.

We regard the problem of discretization as a model selection problem. Hence, in
order to select the best model we need an appropriate model selection criterion. As
we explicitly do not want to assume prior distributions, the MDL principle (Rissanen
1978) makes for a natural and well-founded choice.
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Fig. 2 Example of
discretization component costs.
L(dsc) is the encoding cost of a
discretization dsc of D. In this
example, dsc is a discretization
of both X1 and X2, i.e., here dsc
is a 2-dimensional grid.
L(dsc(D)) is the cost of
encoding the discretized data
dsc(D). Finally, L(D� dsc(D))

is the cost for encoding the exact
data points within each bin

Loosely speaking, MDL identifies the best model as the model that obtains the best
lossless compression of the data. More formally, given a set of models M, the best
model M ∈M is identified as the one that minimizes

L(D, M) = L(M)+ L(D | M) (1)

where L(M) is the length, in bits, of the description of the model M , and L(D | M)

is the length, again in bits, of the description of the data D as encoded by M . That is,
MDL helps select a model that yields the best balance between goodness of fit and
model complexity. To ensure fair comparison, MDL requires lossless encodings.

In the following, we will define interaction preserving discretization in terms of
MDL. First, we will discuss our ideal objective function in Sect. 5.1, which allows for
fair comparison between any discretization; yet, however, does not lend itself for fast
optimization. To facilitate efficient search, in Sect. 5.2 we extend it into a practical
score that uses ID and does allow for efficient search.

5.1 MDL for interaction-preserving discretization

In the context of discretization, let dsc be a discretization of D, and dsc(D) be the
discretized data that dsc creates on D (see Fig. 2). For IPD, we need to encode the
following.

5.1.1 Encoding the discretization

Encoding the discretization grid dsc means encoding the number of bins, and their cut
points, per dimension Xi . Technically, we first encode the number of bins. Assume
that Xi has ki bins, i.e., (ki − 1) cut points. To encode the number of bins ki , we use
LN, the MDL-optimal encoding of integers (Rissanen 1983). It is defined for z ≥ 1,
with LN(z) = log∗(z) + log c0, where log∗(z) = log (z) + log log (z)+ . . ., where
we only include the positive terms, and c0 is set to 2.8654 to make it a valid encoding
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by ensuring that all probabilities sum to 1. The intuition is that larger integers require
more bits.

Next, to encode the locations of the cut points, we note that digitally stored data
is recorded at a finite resolution (Kontkanen and Myllymäki 2007), and hence the
resolution resi of a dimension Xi is data-dependent. For example, let us assume that
dimension Xi has domain [0, 1]. From the data we can observe that it is encoded
with, e.g., 2 significant digits, or, at resolution of resi = 0.01. Given the resolution
resi for a dimension Xi , we have that every possible value of Xi belongs to the set
Vi = {mini + z · resi : z = 0, 1, . . . , ni } where ni = maxi−mini

resi
.

As we have no prior expectation on their location, any set of (ki − 1) distinct cut
points is equally likely—and hence, data-to-model codes are optimal (Vereshchagin
and Vitányi 2004). A data-to-model code is an index into a canonically ordered enu-
meration of all possible data (i.e., values) given the model (the provided information).
Here, we know (ki − 1) cut points have to be selected out of ni candidates; a choice
for which there are

( ni
ki−1

)
possibilities. Assuming a canonical order, log

( ni
ki−1

)
gives

the number of bits to identify the actual set of cut points. As such, we have

L(dsc) =
m∑

i=1

LN(ki )+ log

(
ni

ki − 1

)

for the number of bits required to encode a discretization dsc. Next, we discuss how
to encode the discretized data, dsc(D).

5.1.2 Encoding the discretized data

The length of the discretized data dsc(D) in bits, L(dsc(D)), is defined as

L(dsc(D)) = log |C| +min
C∈C

L(dsc(D), C).

Here, C is the set of all lossless compressors applicable to discrete data of the form
dsc(D). By MDL, we identify the best compressor C ∈ C as the one that encodes
dsc(D) most succinctly. Encoding the index of C requires log |C| bits, and the lossless
encoding of dsc(D) by compressor C takes L(dsc(D), C) bits.

This cost is ideal as it minimizes over all possible compressors. That is, it can detect
and reward any interaction present in the discretized data. However, this general form
is not very practical: we do not have access to all applicable compressors, nor the time
to evaluate them all. To use the score, we will hence have to instantiate C.

To this end, any compressor suited for categorical data can be used. Naively, we
can even encode dimensions independently using prefix codes (Cover and Thomas
2006). However, as our aim is to find IPDs, we should rather use a compressor that is
interaction-aware. That is, one that can detect and reward correlations over dimensions.
For instance, we could first serialize the data row per row, and then use gzip or one
of its many variants. This, however, would be very sensitive to the serialization order
of the data. Better choices hence include modern itemset-based compressors, such
as Krimp (Vreeken et al. 2011), CompreX (Akoglu et al. 2012), Mtv (Mampaey
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et al. 2012), or Pack (Tatti and Vreeken 2008), as these can detect interactions among
dimensions independently to the order of the data. Each can be used as plug in for
L(dsc(D), C)—in our experiments we will evaluate using a number of applicable
compressors.

For the following, let us assume we have chosen a suited compressor, i.e., that
we can calculate L(dsc(D)). We will now finalize the score by discussing how to
reconstruct the continuous input data D given the discretized data dsc(D).

5.1.3 Encoding the errors

In order to make our score lossless, a necessary requirement in MDL, we have to
formalize how to compute the encoding cost of reaching the continuous-valued entries
of D from the discrete values in dsc(D).

Let us write L(D � dsc(D)) for the number of bits required to identify the exact
data points within their respective multivariate cell. This cost can be factorized per
dimension, that is, per univariate bin. Hence, over all data points, we have

L(D� dsc(D)) =
m∑

i=1

L(Xi � dsc(Xi )).

It is more convenient to aggregate this cost per bin. Let {B1
i , . . . , Bki

i } be the set of

bins induced by dsc on dimension Xi . We write |B j
i | as the number of values of Xi

that B j
i contains. We then have

L(Xi � dsc(Xi )) =
ki∑

j=1

|B j
i | log

(⌊
ub(B j

i )− lb(B j
i )

resi

⌋
+ 1

)

as the cost of reaching the actual values for a dimension Xi given the discretized
representation dsc(Xi ), where ub(B j

i ) is the upper bound of bin B j
i , lb(B j

i ) its lower

bound. With the resolution resi of Xi , we have

(⌊
ub(B j

i )−lb(B j
i )

resi

⌋
+ 1

)
as the number

of possible values in B j
i .

5.1.4 The ideal score

With the above three elements we can construct our ideal score. It identifies the best
interaction-preserving multivariate discretization dsc∗ as the discretization that min-
imizes the following cost function (i.e., our ideal score):

L(D, dsc) = L(dsc)+ L(dsc(D))︸ ︷︷ ︸
L(M)

+ L(D� dsc(D))︸ ︷︷ ︸
L(D|M)

. (2)
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We give the intuition on how it identifies the best discretization. First, assume a dis-
cretization dsc that is too detailed, i.e., it splits dimensions into overly many bins. That
is, it is difficult (up to impossible) to detect interactions in dsc(D)—i.e., L(dsc(D))

will be very high. At the same time, as the bins are small identifying exact values
within them is easy—i.e., L(D� dsc(D)) will be low.

Alternatively, assuming dsc is very coarse, i.e., data points are grouped into too
few, or even only 1 bin. dsc(D) will now show interactions even when there are none
in D. It will be easy to compress this data, and L(dsc(D)) will be low. However, there
are now many more possible values per bin, and hence encoding the exact values
of the data costs many more bits—L(D � dsc(D)) will be very high. The optimal
discretization dsc∗ is the discretization that is neither too detailed or too coarse: the
one that maintains the true interactions of D.

A key benefit of this score is that it allows for fair and unbiased comparison between
any discretization discovered by any discretization method—simply by instantiating
it using different compressors, and comparing the total number of bits. We will use it
as such in our experiments in Sect. 7.3.

Though ideal for identifying the optimal discretization, the score does not lend itself
for fast optimization towards that goal. For example, it does not factor over dimen-
sions, and so we would have to discretize all dimensions concurrently. However, for
multivariate data the search space is exponential to both n and m, and hence restric-
tively large in practice. Moreover, we do not have access to the optimal compressor
C∗, and can hence not compute L(dsc(D)) directly. In theory we could approximate
C∗ by instantiation C with a collection of compressors, but this could lead to erratic
behavior. Most importantly, though, is that we aim for a fast general approach for high
quality IPD and hence want to avoid including computationally expensive heuristics
in our objective that only reward specific types of interactions, such as Vreeken et al.
(2011) and Akoglu et al. (2012).

To this end, in the next section, we will take the ideal score and adapt it into a
practical score that is independent of specific compressors, can detect and reward
interactions in general, and does allow for efficient optimization.

5.2 A fast optimizable score for IPD

In this section we will discuss our practical score, which maintains key properties of
our ideal score, yet does allow for efficient optimization. In short, it discretizes one
dimension at a time while considering its interactions with the other dimensions. We
achieve this in three ways. First, we formalize a score that is factorized per dimension.
This allows us to identify the optimal discretization per dimension. Second, we base
on ID to evaluate whether interactions are maintained. Third, to avoid problems of
insufficient data for meaningful statistical assessment (Lee and Verleysen 2007), we
consider data at the level of micro bins instead of the individual objects.

We form micro bins for Xi by partitioning its interval into Ti fine-grained bins (e.g.,
by clustering). For each Xi , let Mi be the corresponding set of micro bins. To avoid
confusion, we refer to bins B j

i of dsci as macro bins.
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With Ti micro bins, we have (Ti − 1) cut points. Merging these micro bins into ki

macro bins B1
i , . . . , Bki

i (each B j
i contains |B j

i | micro bins) means choosing (ki − 1)

out of (Ti − 1) cut points. As such, a discretization for dimension Xi corresponds to
a subset of all cut points, where the empty subset corresponds to merging all micro
bins of Xi into just one macro bin, and the full set corresponds to the input micro bins.
Given a discretization dsci of Xi , we denote dsci (Mi ) as the resulting discretized data
of Xi , i.e., the resulting set of macro bins.

The building blocks of the score are analogue to the ideal score (Eq. 2), yet now
defined per dimension and defined over micro bins. We will discuss its terms in detail
below.

5.2.1 Encoding the discretization

The intuition for encoding dsci is identical to the ideal score. We have

L(dsci ) = LN(ki )+ log

(
Ti − 1

ki − 1

)
,

where we encode the number of bins, and identify the cut points from (Ti−1) options.

5.2.2 Encoding the discretized data

Instead of optimizing towards a specific compressor, we will use ID to determine how
well a discretization dsci maintains the interactions of the data. We define the cost of
encoding the discretized data dsci (Mi ) as

L(dsci (Mi )) = Lbid(dsci (Mi ))+ Lmh(dsci (Mi )) ,

where Lbid(.) is the cost of the discretized data under the independence model, and
Lmh(.) is a penalty on the multivariate heterogeneity of the discretization.

Encoding the macro bin ids Encoding the discretized data means encoding the
macro bin id per micro bin. We do this by assigning optimal prefix codes to the macro
bins, the lengths of which we calculate by Shannon entropy. The code length of the id

of macro bin B j
i then is − log

|B j
i |

Ti
. Over all macro bins, we have

Lbid (dsci (Mi )) =
ki∑

j=1

(
LN

(
|B j

i |
)
− log

|B j
i |

Ti
− |B j

i | log
|B j

i |
Ti

)
.

where the first term encodes the number of micro bins in B j
i , the second is the cost of

the macro bin code in the dictionary, and the third term is the cost of using this code
to identify the macro bin per associated micro bin.

Penalizing multivariate heterogeneity The above encoding is lossless, but unaware
of interactions. To make it interaction-aware, we include a penalty term based on
ID. The intuition is to reward regions with similar distributions to be in the same
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hypercubes (cubes in the space formed by all dimensions), and vice-versa. That is, two
micro bins with different data distributions, as identified by ID, should stay separate.
If a discretization combines them, we penalize accordingly.

We penalize on the number of break points in a macro bin—the indexes of consec-
utive micro bins within the macro bin for which the interaction distance is large. More

formally, let us consider an arbitrary macro bin B j
i with micro bins b j,1

i , . . . , b
j,|B j

i |
i .

For each pair of consecutive micro bins b j,w
i and b j,w+1

i in B j
i , if their interaction

distance is large, we will encode index w to represent a break point between the
distributions. We write I (B j

i ) for the set of indices of these break points, with

I
(

B j
i

)
=
{
w ∈ [1, |B j

i | − 1] |
ID
(

p
(

A\{Xi }|b j,w
i

)
|| p
(

A\{Xi }|b j,w+1
i

))
is large

}
.

This allows us to include the cost of encoding I (B j
i ) in Lmh(dsci (Mi )). (We will

discuss how to decide if an interaction distance is large in Sect. 6.)
To ensure we only penalize when interactions are broken, Lmh includes only those

macro bins for which I (B j
i ) is non-empty. Formally, we define

Lmh (dsci (Mi )) =
ki∑

j=1:
|I
(

B j
i

)
|>0

LN

(
|I
(

B j
i

)
|
)
+ |I

(
B j

i

)
| log
(
|B j

i | − 1
)

where we encode the number of break points by LN, and encode I (B j
i ) using optimal

prefix codes. Here, this entails identifying the index of each break point out of (|B j
i |−1)

possible pairs, which hence costs log(|B j
i | − 1) bits per index. This penalty captures

our intuition: the more micro bins with different multivariate distributions in a macro
bin, the higher its cost. Combined, Lbid and Lmh tell us how well a discretization
maintains the interactions and detail of the data.

5.2.3 Encoding the errors

With the above we know the discrete data. The final step is to reconstruct the data
up to the micro bin ids. As we know the number of micro bins per macro bin from
dsci (Mi ), here we only have to identify the ids of the micro bins. Using optimal prefix
codes, we have

L(Mi � dsci (Mi )) =
ki∑

j=1

|B j
i | log |B j

i |.

Note that we do not have to reconstruct the original data up till the exact values of
Xi for fair model selection. This has two reasons. First, recall that our practical score
only considers data up to the resolution of the micro bins: it does not ‘see’ the data in
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higher detail. Second, the cost of encoding the exact values of Xi for a given set of
micro bins Mi is constant over all models. Hence, we can safely ignore it here.

5.2.4 The practical score

We have now completed the definition of our practical score, which aims to identify
the best IPD per dimension. Formally, we aim at finding the discretization dsc∗i per
dimension Xi that minimizes

L(Mi, dsci) = L(dsci)+ L(dsci(Mi))+ L(Mi � dsci(Mi)). (3)

It is easy to see that its terms are analogue to the ideal score (Eq. 2), and though there
exists no formal connection between our two scores, the general intuition is identical:
both reward and punish similarly. Intuitively, a good solution under the practical score
is also a good solution under the ideal score.

We do note that our practical score is independent of resi . In addition, it addresses
the lack of the optimal compressor, and can be optimized independently per dimension.
Furthermore, it can be instantiated by any interaction distance. In this paper, we use
ID as an instantiation since it yields a good combination of theoretical correctness and
foundations, simplicity, and ease of computation.

6 The IPD algorithm

Having introduced the theoretical model of IPD, which consists of our interaction
distance ID and our MDL-based score, we now detail our algorithmic approach. In
order, we will first give two efficient bin merge strategies, then discuss parameter
settings, and finally we will analyze the time complexity of our algorithms.

6.1 Algorithms

We will now discuss the IPD algorithm, for which we give the pseudo code as Algo-
rithm 1. First, we pre-process the data to obtain micro bins (Line 3), after which for
every pair of consecutive micro bins we use ID to calculate their interaction. The most
important step in IPD is the bin merge strategy on Line 6. Given Ti micro bins, there
are 2Ti−1 merge possibilities, which is too many to evaluate exhaustively. For exam-

Algorithm 1: IPD
for each dimension Xi ∈ A do1

Ai ← A \ {Xi }2

Form micro bins {b1
i , . . . , b

Ti
i } for Xi3

for w = 1 to Ti − 1 do4

idw
i = ID(p(Ai |bw

i ) || p(Ai |bw+1
i ))5

Macro bins {B1
i , . . . , B

ki
i } ←Merge of {b1

i , . . . , b
Ti
i } using {id1

i , . . . , id
Ti−1
i }6
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ple, for Ti = 50 we already have more than 1 trillion options. To tackle this problem,
we prove that the optimal merge of micro bins can be found in polynomial time by
dynamic programming. The details are as follows.

6.1.1 Optimal bin merge strategy IPDopt

We show that the search space of bin merges for a dimension Xi is structured, i.e.,
intermediate results can be re-used to avoid redundant computation. In particular, let
F(c, k) be the minimum total encoding cost over all merges of the first c micro bins of
Xi (1 < c ≤ Ti ) producing k macro bins (1 < k ≤ c). For each l with k − 1 ≤ l < c,
consider a merge of the first c micro bins that combines the first l of them into (k− 1)

macro bins, and combines the remaining (c− l) micro bins into its kth macro bin Bk,l
i .

We arrive at the following theorem.

Theorem 4 F(c, k) is equal to

min
k−1≤l<c

{
F(l, k − 1)

+ LN(k)+ log

(
c − 1

k − 1

)
− LN(k − 1)− log

(
l − 1

k − 2

)
(4)

+ LN

(
|Bk,l

i |
)
− log

|Bk,l
i |
c
− (k − 1) log

c − |Bk,l
i |

c
(5)

− |Bk,l
i | log

|Bk,l
i |
c
−
(

c − |Bk,l
i |
)

log
c − |Bk,l

i |
c

(6)

+ LN

(
|I
(

Bk,l
i

)
|
)
+ |I

(
Bk,l

i

)
| log
(
|Bk,l

i | − 1
)

(7)

+ |Bk,l
i | log |Bk,l

i |
}

(8)

Informally speaking, with regard to our practical score we can consider term (4)
to represent L(dsci ), terms (5) and (6) to correspond with Lbid(dsci (Mi )), term (7)
with Lmh(dsci (Mi )), and term (8) with L(Mi � dsci (Mi )).

Theorem 4 permits an algorithm based on dynamic programming, since the solution
of the first (left-most) c micro bins can be derived from that of the first l < c micro
bins. Using dynamic programming, the search for the optimal bin merge is feasible in
a polynomial time: For each k such that 1 < k ≤ Ti , we find the optimal bin merge
w.r.t. our practical score producing k macro bins on Xi using dynamic programming.
When k = 1, there is no need to apply the algorithm. Finally, the one yielding the
minimum cost across all k ≥ 1 is selected as the final output. Note that Xi could
end up with only one bin. One possible interpretation of this is that Xi contains no
significant interaction with other dimensions since, e.g., Xi is a noisy dimension where
data values are randomly scattered.

Though dynamic programming is an efficient strategy for traversing an exponential
search space, it may require prohibitively long runtime for large data. In addition to
this optimal solution, we therefore propose a fast greedy heuristic.
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6.1.2 Greedy bin merge strategy IPDgr

Our greedy bin merge is as follows. Starting with the Ti micro bins of Xi , in each
step, it searches for two bins whose merge minimizes the practical MDL-based score.
If this score is less than the current score, i.e., their merge is beneficial, the greedy
algorithm merges these two bins and continues. Otherwise, it terminates. We have two
performance bounds of IPDgr on Xi as follows.

Theorem 5 Asymptotically IPDgr is a 2-approximation algorithm of IPDopt .

Theorem 6 Let dscgr
i be the discretization yielded by IPDgr on Xi . Further, let dsc1

i be
the discretization that merges all micro bins of Xi into one single macro bin. Assuming
L(Mi , dscgr

i ) ≤ L(Mi , dsc1
i ), for ε ∈ [0, 1] such that (Ti −1) · ε pairs of consecutive

micro bins of Xi have low interaction distance, we asymptotically have IPDgr as a
(2− ε)-approximation algorithm of IPDopt .

As in general ε will be larger than zero, the bound in Theorem 6 improves over
Theorem 5. For instance, when ε = 1/3, IPDgr is a 1.67-approximation algorithm
of IPDopt . We observe that the assumption made in Theorem 6 holds for all data sets
tested in the experiments. In fact, the results show that IPDgr achieves an approximation
factor of about 1.1 of IPDopt , while being up to an order of magnitude faster. Overall,
we find that in practice IPDgr strikes a very good balance between time and quality.
Still, we note that both variants are both more efficient and produce higher quality
discretizations than existing techniques.

6.2 Parameter settings

6.2.1 Setting the number of micro bins

To set Ti , we rely on a recent result by Reshef et al. (2011). They show that to avoid
inflated pairwise correlation scores when discretizing data, the number of bins in each
dimension must be≤n1−δ , with n being the number of data points of D and δ ∈ (0, 1).
Based on this result, and our own preliminary empirical analysis, we use Ti = n0.5 in
the remainder of this paper.

6.2.2 Setting a threshold for interaction distances

To use ID in our practical score, i.e., to compute Lmh(dsci (Mi )), we need to be able to
decide which interactions distances are ‘large’. This is a difficult problem in general,
also for other distance functions. The naive way is to use a fixed cutoff threshold.
However, preliminary analysis showed this does not work well. That is, in practice
there is no global threshold suitable for all dimensions and all data sets.

Instead, we propose a data-driven approach: sort the distances between consecutive
micro bins in ascending order and pick a threshold equal to a quantile tq of the distance
values. We thus make the threshold dependent on the distance distribution of each
dimension. Preliminary experiments showed that the first tertile is a good choice. Of
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course, one can adjust tq , e.g., by analyzing the distance values, to reflect the level of
detail one is willing to keep. One can just set tq as we do, and let our discretization
methods handle the task of merging bins appropriately. Throughout all experiments
in this paper we will use the first tertile.

6.3 Complexity analysis

The computational complexity of IPD consists of three parts (1) pre-sorting the data
per dimension, (2) computing interaction distances, and (3) bin merging.

Sorting the data costs O(n log n) per dimension. For each dimension Xi we compute
the distances between all pairs of consecutive micro bins, with an individual cost of
O(mn2

T 2
i

) (cf., Theorem 3). As there are Ti−1 pairs of micro bins, the cost per dimension

is O(mn2

Ti
) = O(mn1.5) (cf., Sect. 6.2). Bin merging takes O(T 3

i ) = O(n1.5) for the

dynamic programming method, and O(T 2
i ) = O(n) for the greedy method. In sum,

we see that for both bin merge strategies the total theoretical complexity of IPD is
O(m2n1.5).

It is interesting to compare this result to existing techniques. When we do so, we
find that with regard to size MVD (Bay 2001), CPD (Mehta et al. 2005), SD (Fayyad
and Irani 1993), and ChiM (Kerber 1992) all have a complexity of O(n2), while UD
potentially scales cubicly to n. With regard to dimensionality, CPD requires O(m3)

time for performing PCA, and potentially exponential time with m for mining itemsets
inside the bins. Similarly, in the worst case MVD scales exponentially to m due to
its use of contrast set mining. UD, SD, and ChiM scale linearly to m, as they do not
analyze interactions with the other (m − 1) dimensions. Overall, in terms of worst
case complexity, we find that IPD is at least as efficient as its multivariate competitors.
However, the empirical results show that in practice IPD is much faster than both its
univariate and multivariate competitors.

7 Experiments

In our experiments, we study the ability of IPD to maintain multivariate interactions.
We test its two variants: optimal IPD (IPDopt) using dynamic programming and greedy
IPD (IPDgr), which employs our greedy bin merge strategy.

All experiments were conducted on an Intel i5-2520M machine with 8GB RAM.
For research purposes we provide the code of IPD on our website.2

7.1 Setup

We perform four sets of experiments. We first evaluate, using synthetic data, if our
methods preserve known interactions (Sect. 7.2). Next, we evaluate on real-world

2 http://www.ipd.kit.edu/~nguyenh/ipd/.
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Table 1 Characteristics of methods

Unsupervised Multivariate Interaction preserving

UD (Kontkanen and Myllymäki 2007) � – –

CPD (Mehta et al. 2005) � � *

SD (Fayyad and Irani 1993) – – –

IPD � � �
* means partially

Table 2 Characteristics of the
real data sets

Data n m Classes

Climate 35601 251 –

Crime 1993 101 –

Gas 13910 128 7

KDD 311029 41 38

Energy 48501 540 2

Mini 130064 50 2

PAMAP 1686000 42 15

PAMAP2 1662216 51 18

Parkinson 5875 18 –

SatImage 6435 36 6

data using three representative use cases for multivariate discretization: pattern-based
compression (Sect. 7.3), outlier detection (Sect. 7.4), and classification (Sect. 7.5).

We compare IPDopt and IPDgr against state of the art methods in both supervised and
unsupervised discretization. Table 1 summarizes their characteristics. UD (Kontkanen
and Myllymäki 2007) performs unsupervised univariate discretization, CPD (Mehta
et al. 2005) is for unsupervised multivariate discretization, and SD (Fayyad and Irani
1993) is for supervised discretization. For each method, we optimize parameter settings
according to their respective papers. We create the initial micro bins on the basis of
equal-frequency, similar to Mehta et al. (2005), and hence, allow for fair comparison.
For IPD, we always fix tq to the first tertile.

We experiment on 10 real data sets. We draw six of them from the UCI Machine
Learning Repository, the publicly available PAMAP database 3, and two further data
sets on energy and climate data. The Energy data set contains hourly energy consump-
tion indicators (e.g., water, heating, electricity) of different buildings in KIT university
campus, recorded from 2006 to 2011. The climate data set contains climate data of
an office building in Frankfurt, Germany, collected from 2004 to 2012 (Wagner et al.
2014). Note that SD requires labels and is hence, inapplicable on Climate, Crime, and
Parkinson. We summarize the characteristics of these data sets in Table 2.

3 http://www.pamap.org/demo.html.
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Table 3 Preserving interactions on Synthetic Case 1

Ideal X1 X2 X3 X4 X5 X6 X7 X8 − X100
0.0 0.0 0.0 0.0 0.0 0.0 0.0 −

IPDopt −0.04 0.03 −0.04 −0.05 0.02 0.04 −0.04 −
IPDgr −0.05 0.05 −0.04 −0.05 0.04 0.05 −0.05 −
UD − − − − − − − −
SD − − − − − − −0.04 –

CPD 0.28 0.24 0.16 −0.21 −0.11 −0.24 0.22 +

0.41 0.37 0.34 0.39 0.33 0.10 0.36

The ideal outcome: one cut point at 0.0 for dimensions X1–X7, no cut points for X8–X100. (−) means no
cut point. (+) means has at least one cut point

7.2 Preserving interactions

To show that our methods are able to preserve known dimension interactions, we first
experiment on synthetic data.

7.2.1 Synthetic Case 1

First, we generate data according to the R+ I + S parity problem, which is the contin-
uous version of the parity problem. That is, each data set consists of (a) R dimensions
uniformly distributed in the range [−0.5, 0.5], (b) another dimension whose value
is a random number drawn from (0, 0.5] if an even number of values of the first R
dimensions are positive, and drawn from [−0.5, 0] otherwise, and (c) S irrelevant
dimensions. For each R, we create a data set of 10,000 points, including 10 % noise.
We present representative results with R = 6 and S = 93, i.e., 100 dimensions in total.
For SD, we create the class label as follows: If the (R + 1)th dimension is positive,
the class is 1, and 0 otherwise.

Please note that, in the ideal solution, each of the dimensions X1 to X7 only has
one cut point at 0.0 (i.e., two bins) while no irrelevant dimension has a cut point.
Table 3 shows that IPDopt and IPDgr produce the results closest to the ideal. UD is
univariate and oblivious to dimension interactions, and hence here creates only one
bin for X1 to X7. SD also yields only one bin for X1 to X6. This is because it only
considers the interaction of each dimension with the class label, while in this case,
interactions among multiple dimensions are required to find proper cut points. CPD in
turn introduces spurious cut points for all dimensions, including the irrelevant ones.

To assess robustness of ID with regard to high dimensional interactions, we evalu-
ated on data with R = 60 and S = 300. The result are consistent with those above.

7.2.2 Synthetic Case 2

Next, we generate data according to multivariate histograms. Each data set created
has (R + 2R + 3R + 20R) dimensions in the range [−5.0, 5.0]. Each of the first R
dimensions (R-dimensional interaction) has one cut point at 0.0. Each of the next 2R
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Table 4 Preserving interactions on Synthetic Case 2

IPDopt IPDgr UD CPD SD

5-dimensional interaction � � – – n/a

10-dimensional interaction � � – – n/a

15-dimensional interaction � � – – n/a

100 irrelevant dimensions � � � – n/a

“�” means the respective method discovers the correct discretization over all dimensions of the given group,
and “–” if otherwise. The ideal outcome: “�” in all groups. SD is not applicable as the task is unsupervised

dimensions (2R-dimensional interaction) has three cut points at −3.0, 0.0, 3.0. Each
of the next 3R dimensions (3R-dimensional interaction) has five cut points at −3.0,
−1.0, 0.0, 1.0, 3.0. The remaining 20R dimensions are irrelevant. For each group of
relevant dimensions with n bins per dimension, we pick n multivariate cells that do not
overlap in any univariate bin. For instance, assuming that R = 3, cells (0, 1, 0) and
(1, 0, 1) of the first group do not have a common univariate bin. For each cell picked,
we assign a multivariate Gaussian distribution with a dimensionally matching mean
vector and covariance matrix. To create a new data point o, from each relevant group
we pick a cell (with equal probability) and sample the values of o in the respective
dimensions accordingly. In the irrelevant dimensions, the values of o are sampled
uniformly randomly from [−5.0, 5.0]. To increase complexity we add 10 % random
data points to the unselected cells. Using our procedure, we ensure each data set to
follow a known histogram, i.e., known ground-truth cut points.

For a given data set, a discretization method is considered to produce a correct
result for a group iff (a) it produces the correct number of cut points in all member
dimensions, and (b) if the group contains relevant dimensions, each cut point is within
a distance δ = 0.5 to the correct cut point. Table 4 shows the results on a data set with
R = 5, and containing 10,000 points. For brevity, we only show if methods correctly
identify cut points for different groups. Only IPDopt and IPDgr produce the correct
discretizations for all groups. This implies that IPD and hence ID are robust w.r.t. high
dimensional interactions.

Overall, the experiments on synthetic data show that our methods successfully
identify and preserve synthetic interactions among dimensions.

7.3 Compression

Next, we examine whether IPD preserves interactions in real-world data. To this end,
we use our ideal score (Sect. 5.1) to fairly compare between discretizations. The
resolutions per dimension needed in L(dsc) and L(D� dsc(D)) are determined from
the data following Kontkanen and Myllymäki (2007).

We instantiate the score with three different compressors. First, we use gzip, a
general purpose compressor. To apply it, we serialize the data per row, per column
in the original order of the data. Further, we use Krimp (Vreeken et al. 2011) and
CompreX (Akoglu et al. 2012), two pattern-based methods that compress data using
itemsets—which allows these methods to detect and reward multivariate interactions.
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Fig. 3 [Lower is better] Relative total compression costs for all data sets, using gzip (top), Krimp (middle),
and CompreX (bottom) as compressor. The compression costs of IPDopt are the bases. SD is not applicable
on unlabeled data. UD did not finish within 6 days on the PAMAP data (Color figure online)

In addition, CompreX can exploit correlations by grouping and encoding highly inter-
acting attributes together. For gzip and CompreX we use default parameters, for
Krimp we use a minimal support of 10 %. Overall, for each compressor, the total
encoding cost L(D, dsc) will be low only if the interactions are preserved well.

We present the results in Fig. 3. The plots show the relative compression rates,
with IPDopt as base, per dataset, for each of the considered discretization methods,
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Table 5 [Lower is better] The total compression costs in bits of IPDopt and IPDgr , L(D, dsc), using
different compressors

Data gzip Krimp CompreX

IPDopt IPDgr IPDopt IPDgr IPDopt IPDgr

Climate 19413k 21018k 14092k 15501k 11247k 12597k

Crime 754k 786k 486k 511k 282k 305k

Gas 3867k 4358k 2929k 3134k 2753k 3028k

KDD 3178k 3178k 2838k 2923k 2724k 2751k

Energy 28367k 30197k 22743k 22971k 13246k 13908k

Mini 56033k 58360k 19348k 20509k 9757k 10635k

PAMAP 113062k 118373k 92215k 94982k 80187k 85800k

PAMAP2 132673k 137874k 105967k 114444k 92146k 104125k

Parkinson 294k 328k 210k 228k 169k 186k

SatImage 688k 754k 491k 530k 420k 462k

using respectively gzip, Krimp, and CompreX as compressor. The absolute total
compression costs for IPDopt and IPDgr are reported in Table 5.

From the figures, we see that IPDopt yields the best results across all data sets and all
three compressors. The performance of IPDgr is very close to that of IPDopt . Further,
our methods provide about 100 % saving in bits compared to SD, and even over
200 % compared to UD and CPD. This implies that our methods preserve dimension
interactions well, aiding interaction-aware methods like Krimp and CompreX to detect
patterns over multiple attributes, leading to lower compression costs.

Concerning the competition, UD did not finish within 6 days for the PAMAP data
sets. Although multivariate in nature, CPD did not obtain very good scores, which
indicates it either does not maintain all strong interactions, or that spurious interactions
are introduced. Overall, the results show that IPDopt and IPDgr best preserve complex
patterns hidden in different real-world data sets.

7.4 Outlier detection

The previous experiments showed our methods preserve interactions. Next, we inves-
tigate how well outliers can still be identified in the discretized data. If a discretization
is too detailed, all values will be unique, and hence all records are ‘outliers’. If the
discretization is too coarse, no outliers will be detectable.

To detect outliers we use CompreX with the different discretization methods as pre-
processing step. As argued by Akoglu et al. (2012), patterns that compress the majority
of the data well define its norm, and hence, data points that cannot be compressed well
can be safely regarded as an outlier. To evaluate performance we use labeled data: one
class as the ‘normal’ objects and another as the ‘outliers’. The evaluation metric is
the average precision, computed as the area under the precision-recall curve. It is the
average of the precision values obtained across recall levels. As standard baseline, we
run LOF (Breunig et al. 2000) on the original data. Climate, Crime, and Parkinson are
unlabeled and hence not applicable in this experiment.
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Table 6 [Higher is better]
Average precision (area under
precision-recall curve) for
outlier mining.

LOF ran on the original
continuous data. Highest values
are in bold. (*) means the result
is unavailable due to excessive
runtime

Data IPDopt IPDgr UD CPD SD LOF

Gas 0.74 0.72 0.36 0.42 0.48 0.64

KDD 0.54 0.53 0.14 0.19 0.03 0.44

Energy 0.70 0.69 0.33 0.45 0.45 0.36

Mini 0.79 0.79 0.30 0.53 0.51 0.60

PAMAP 0.82 0.79 * 0.38 0.24 0.54

PAMAP2 0.84 0.82 * 0.41 0.27 0.53

SatImage 0.41 0.41 0.21 0.28 0.15 0.33

Average 0.69 0.68 0.27 0.38 0.30 0.49

We present the results in Table 6. Both IPDopt and IPDgr obtain very high average
precision, outperforming the competition with a broad margin. In fact, a Friedman
test (Demsar 2006) at α = 0.05 shows that the observed differences are significant. A
Nemenyi test in the post-hoc analysis learns us that: (a) IPDopt significantly outper-
forms UD, CPD, and SD, and (b) IPDgr significantly outperforms UD and SD. Using
a Wilcoxon signed rank test with α = 0.05 to compare IPDgr and CPD, we find IPDgr

to be significantly better.
Interestingly, IPDopt and IPDgr beat LOF with a wide margin—significant under a

Wilcoxon signed rank test—despite that discretized data contains inherently less infor-
mation. By weeding out irrelevant associations, IPD provides CompreX the chance
to outperform LOF.

We are aware that outlier detection methods exist that may outperform LOF. How-
ever, our goal here is not to push the envelope in outlier detection, but to compare the
quality of the discovered discretizations. Moreover, LOF is often used as baseline.

7.5 Classification

Next, we evaluate the methods in the context of a supervised task: classification. To
evaluate performance, we train Random Forests (Breiman 2001) on the discretized
data, and consider accuracy as the performance metric. In addition, as a baseline,
we also report its performance on the continuous data (RF). We use the implemen-
tation in the WEKA toolkit with default parameters. All results are obtained by per-
forming tenfold cross validation. For the unsupervised methods IPDopt , IPDgr , UD,
and CPD, we do not show the class labels during discretization. As above, the unla-
beled data sets are not applicable. For PAMAP, RF did not finish due to memory
overflows.

We present the results in Table 7. We report both mean and standard deviation over
the cross-validation folds. Considering the results, we see that the supervised methods
SD and plain RF obtain much higher accuracies than UD and CPD. Interestingly, and
somewhat surprisingly, both IPDopt and IPDgr consistently outperform SD, and per-
form as least as good as plain RF—even though they were unaware of the class labels.
A possible explanation is that RF and SD only maintain interactions between individ-
ual dimensions and the class label, and by making decisions locally may misalign bins
of interacting dimensions. Our methods, however, are able to detect and maintain the
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Table 7 [Higher is better] Classification accuracy

Data IPDopt IPDgr UD CPD SD RF

Gas 0.99 ± 0.00 0.99 ± 0.00 0.56 ± 0.01 0.71 ± .01 0.98 ± 0.00 0.99 ± 0.00

KDD 0.98 ± 0.00 0.98 ± 0.00 0.58 ± 0.00 0.70 ± 0.00 0.98 ± 0.00 0.98 ± 0.00

Energy 0.97 ± 0.01 0.96 ± 0.01 0.48 ± 0.02 0.68 ± 0.02 0.94 ± 0.01 0.93 ± 0.01

Mini 0.92 ± 0.00 0.91 ± 0.00 0.75 ± 0.00 0.72 ± 0.00 0.89 ± 0.00 0.91 ± 0.00

PAMAP 0.92 ± 0.01 0.90 ± 0.01 * 0.71 ± 0.01 0.87 ± 0.01 –

PAMAP2 0.98 ± 0.01 0.98 ± 0.01 * 0.66 ± 0.00 0.86 ± 0.01 –

SatImage 0.89 ± 0.01 0.87 ± 0.01 0.82 ± 0.01 0.81 ± 0.01 0.86 ± 0.01 0.89 ± 0.01

Average 0.95 0.94 0.64 0.71 0.91 0.94

RF ran on the original continuous data. Highest values are in bold. (*) means the result is unavailable due
to excessive runtime. (–) means the result is unavailable due to memory overflow

multivariate structure of the data, which if it correlates with the class label, will aid
classification.

By applying a Friedman test at α = 0.05, we find the observed differences between
the discretization methods to be significant. A Nemenyi test in the post-hoc analysis
shows IPDopt and IPDgr perform significantly better than UD and CPD. A Wilcoxon
signed rank test between IPDopt and SD, shows IPDopt to be significantly better.
Repeating this test between IPDgr and SD, we find IPDgr to be significantly better.
The difference between IPDopt , resp. IPDgr , and RF is not significant.

Note that we are aware of other modern classifiers (e.g., SVMs), which may out-
perform RF. However, for us, state of the art classification is not the goal, but simply
a means for evaluating how well discretization techniques maintain interactions.

7.6 Runtime

Last, we evaluate runtime. In Fig. 4, we show the relative runtimes of all methods on
all data sets considered. We pick the runtimes of IPDopt as the bases. The wall-clock
runtimes of IPDopt and IPDgr are in Table 8. The results show that in practice, both our
methods are faster than the competition, with IPDgr by far the fastest method overall.
UD did not finish within 6 days on the PAMAP data.

8 Discussion

The experiments show that IPD provides very high quality discrete data, maintain-
ing the key structures and interactions of the original continuous data. We found
that it consistently outperforms its competitors in maintaining interactions and pat-
terns, allowing for the identification of outliers, as well as in classification accuracy.
Moreover, the runtime experiment shows that it is faster than both state of the art
univariate and multivariate competitors. The improved performance of IPD com-
pared to existing techniques can be traced back to its three main components, (a)
our interaction distance ID, (b) our MDL-based balancing of preserving dimension
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Fig. 4 [Lower is better] Relative runtimes of all methods compared to IPDopt . SD is only applicable on
labeled data (Color figure online)

Table 8 [Lower is better] The
single-threaded, wall-clock
runtimes in seconds of IPDopt
and IPDgr

Data n m IPDopt IPDgr

Climate 35601 251 61242 10708

Crime 1993 101 47 32

Gas 13910 128 1267 682

KDD 311029 41 10200 3674

Energy 48501 540 107233 25532

Mini 130064 50 15208 3923

PAMAP 1686000 42 217835 77798

PAMAP2 1662216 51 284778 109530

Parkinson 5875 18 32 6

SatImage 6435 36 77 18

interactions and the information within dimensions, and (c) our efficient bin merge
strategies. In sum, IPD provides a powerful approach for unsupervised multivariate
discretization.

This is not to say that the problem of interaction-preserving multivariate discretiza-
tion is now solved. IPD involves some design choices and there is room for alternative
solutions and improvements, which are beyond the scope of this article. For instance,
we form micro bins on the basis of equal-frequency. It is interesting to see whether
more advanced techniques for forming micro bins, such as UD, may lead to better
overall interaction preservation.

MDL here guides us to very good discretizations. However, constructing an encod-
ing involves choices that determine which structure is rewarded. We formalized a
general MDL framework for IPD; if one is willing to make explicit assumptions on
the distribution of the data or structure of the ideal discretization, other encodings or
model selection techniques can be considered. Also, for a more specialized solution,
one could optimize towards one specific compressor.
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We do note that our MDL framework can be instantiated by any interaction distance.
In this paper, we use ID as an instantiation. Depending on the task at hand, other
interaction distances may be preferred, such as the Kullback-Leibler divergence or the
Jensen-Shannon divergence (Cover and Thomas 2006). As long as one is able to find
a reliable way to compute such distances, these can be used within our framework. In
our context, we find that ID yields a good combination of theoretical correctness and
foundations, simplicity, and ease of computation.

In this paper we focused on discretization quality. As future work, we consider
looking into highly scalable approximations to IPD. Key ideas include that ID can
be sped up by considering not all dimensions, but only those within the subspace
most strongly interacting with the current dimension. That is, we can factor the full-
space into smaller subspaces that can then be considered independently. This reduces
the complexity for ID, and allows for efficient implementation by parallelization.
Additionally, as IPD discretizes dimensions independently of the others this can be
trivially parallelized, as can the computation of ID between consecutive micro bins.

9 Conclusion

In this paper, we proposed IPD, an information-theoretic method for unsupervised
discretization of multivariate data, that specifically focuses on the preservation of
interactions. That is, for each dimension we consider the distribution of the data
over all others. In particular, we only merge consecutive regions if their multivari-
ate distributions are statistically similar and the merge reduces the MDL encoding
cost. Empirical evaluation on both synthetic and real-world data sets shows that IPD
obtains high quality discrete data that maintains the key interactions of the original,
while outperforming existing methods in a range of knowledge discovery tasks.

IPD and ID have high potential impact in any setting where discretization is
required, be it explicitly such as for methods that only consider discrete data, or
implicitly wherever cut points need to be decided. As examples, we plan to inves-
tigate the application and embedding of our methods for pattern mining, subgroup
discovery, and selectivity estimation. Moreover, we are investigating highly scalable
approximations that would allow considering very large databases.
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10 Appendix

10.1 Proof of Theorem 2

Proof (Theorem 2) Let H(A) = P(A) − R(A) and G(A) = R(A) − Q(A). The
inequality becomes
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√√√√
∫

Ω

H2(a)da +
√√√√
∫

Ω

G2(a)da ≥
√√√√
∫

Ω

(H(a)+ G(a))2 da, (9)

which in turn is equivalent to
√√√√
∫

Ω

H2(a)da ·
∫

Ω

G2(a)da ≥
∫

Ω

H(a)G(a)da, (10)

which is also known as Hölder’s inequality. 
�

10.2 Proof of Theorem 3

Proof (Theorem 3) Let ind(α) be an indicator function with value 1 if α is true and 0
otherwise. It holds

P(a) =
max1∫

min1

. . .

maxm∫

minm

ind(x1 ≤ a1) · · · ind(xm ≤ am)p(x1, . . . , xm)dx1 · · · dxm (11)

Using empirical data, we hence have

P(a) = 1

k

k∑
j=1

m∏
i=1

ind(Ri
j ≤ ai ), and Q(a) = 1

l

l∑
j=1

m∏
i=1

ind(Si
j ≤ ai ),

and therefore [ID(p(A) || q(A))]2 equals to

max1∫

min1

. . .

maxm∫

minm

⎛
⎝1

k

k∑
j=1

m∏
i=1

ind(Ri
j ≤ ai )− 1

l

l∑
j=1

m∏
i=1

ind(Si
j ≤ ai )

⎞
⎠

2

da1 · · · dam(12)

Expanding the above term and bringing the integrals inside the sums, we have

1

k2

k∑
j1=1

k∑
j2=1

m∏
i=1

maxi∫

mini

ind
(

max
(

Ri
j1 , Ri

j2

)
≤ ai

)
dai

− 2

kl

k∑
j1=1

l∑
j2=1

m∏
i=1

maxi∫

mini

ind
(

max
(

Ri
j1 , Si

j2

)
≤ ai

)
dai (13)

+ 1

l2

l∑
j1=1

l∑
j2=1

m∏
i=1

maxi∫

mini

ind
(

max
(

Si
j1 , Si

j2

)
≤ ai

)
dai ,

by which we arrive at the final result. 
�
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10.3 Proof of Theorem 5

Proof (Theorem 5) Consider a discretization dsci on dimension Xi with ki macro bins
{B1

i , . . . , Bki
i }. We have

L(Mi , dsci ) ≥ Lbid(dsci (Mi ))+ L(Mi � dsci (Mi )) (14)

≥
⎛
⎝

ki∑
j=1

LN

(
|B j

i |
)
+
(
|B j

i | + 1
)

log
Ti

|B j
i |

⎞
⎠+

ki∑
j=1

|B j
i | log |B j

i |

(15)

≥ (Ti + ki ) log Ti −
ki∑

j=1

log |B j
i | (16)

≥ Ti log Ti . (17)

Let dscTi
i be the discretization that puts each micro bin into a separate macro bin. We

have
L
(

Mi , dscTi
i

)
= LN(Ti )+ Ti log c0 + 2Ti log Ti . (18)

Let dscopt
i and dscgr

i be the discretization yielded by IPDopt and IPDgr , respectively.
Let dsci be a discretization that merges two micro bins with a low interaction

distance into the same macro bin and places each of the other micro bins into a
separate macro bin. It holds that

L(Mi , dsci ) = LN(Ti−1)+ log(Ti−1)+(Ti−1) log c0+2Ti log Ti− log Ti . (19)

Thus, L(Mi , dsci ) < L(Mi , dscTi
i ), i.e., merging two consecutive micro bins with a

low interaction distance in the first place will yield an encoding cost lower than that of
dscTi

i . Thus, IPDgr will proceed after this step. Hence, L(Mi , dscgr
i ) ≤ L(Mi , dsci ).

We have
L(Mi , dscgr

i )

L(Mi , dscopt
i )
≤ L(Mi , dsci )

Ti log Ti
. This leads to

L
(
Mi , dscgr

i

)

L
(

Mi , dscopt
i

) ≤ LN(Ti−1)+ log(Ti−1)+ (Ti−1) log c0 + 2Ti log Ti− log Ti

Ti log Ti
.

(20)
Let RHS be the right hand side of (20). It holds that lim

Ti→∞
RHS = 2 as

lim
Ti→∞

LN(Ti−1)
Ti log Ti

= 0 (Grünwald 2007). In other words, as Ti →∞,
L(Mi ,dscgr

i )

L(Mi ,dscopt
i )
≤ 2.

Therefore, asymptotically IPDgr is a 2-approximation algorithm of IPDopt . 
�
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10.4 Proof of Theorem 6

Proof (Theorem 6) We assume that there are (Ti −1)ε pairs of consecutive micro bins
of Xi that have low interaction distance (0 ≤ ε ≤ 1), i.e., (Ti − 1)(1− ε) pairs have
a large interaction distance. We have

L(Mi , dsc1
i ) = log c0 + LN(Ti )+ LN ((Ti − 1)(1− ε))

+ (Ti − 1)(1− ε) log(Ti − 1)+ Ti log Ti . (21)

This means
L(Mi ,dscgr

i )

L(Mi ,dscopt
i )
≤

log c0 + LN(Ti )+ LN ((Ti − 1)(1− ε))+ (Ti − 1)(1− ε) log(Ti − 1)+ Ti log Ti

Ti log Ti
.

(22)
Let RHS be the right hand side of (22). Note that lim

Ti→∞
RHS = 2− ε. In other words,

as Ti →∞,
L(Mi , dscgr

i )

L(Mi , dscopt
i )
≤ 2− ε. 
�
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