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Abstract Pattern mining is one of the most important aspects of data mining. By
far the most popular and well-known approach is frequent pattern mining. That
is, to discover patterns that occur in many transactions. This approach has many
virtues including monotonicity, which allows efficient discovery of all frequent pat-
terns. Nevertheless, in practice frequent pattern mining rarely gives good results—the
number of discovered patterns is typically gargantuan and they are heavily redundant.

Consequently, a lot of research effort has been invested toward improving the
quality of the discovered patterns. In this chapter we will give an overview of the
interestingness measures and other redundancy reduction techniques that have been
proposed to this end.

In particular, we first present classic techniques such as closed and non-derivable
itemsets that are used to prune unnecessary itemsets. We then discuss techniques for
ranking patterns on how expected their score is under a null hypothesis—considering
patterns that deviate from this expectation to be interesting. These models can either
be static, as well as dynamic; we can iteratively update this model as we discover
new patterns. More generally, we also give a brief overview on pattern set mining
techniques, where we measure quality over a set of patterns, instead of individually.
This setup gives us freedom to explicitly punish redundancy which leads to a more
to-the-point results.
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1 Introduction

Without a doubt, pattern mining is one of the most important concepts in data mining.
In contrast to the traditional task of modeling data—where the goal is to describe all
of the data with one model—patterns describe only part of the data [27]. Of course,
many parts of the data, and hence many patterns, are not interesting at all. The goal
of pattern mining is to discover only those that are.

Which brings us to one of the core problem of pattern mining, and the topic of this
chapter: interestingness measures. Or, how to determine whether a given pattern is
interesting, and how to efficiently mine the interesting patterns from a given dataset.
In particular, we find many interesting research challenges in the combination of
these two problems.

Before we go into this dual, there is a key problem we have to address first:
interestingness is inherently subjective. That is, what is very interesting to one may
be nothing but a useless result to another. This goes both between different analysts
looking at the same data, but also between different data bases, as well as data mining
tasks. As such, we know that our lunch will not be free: there is not a single general
measure of interestingness that we can hope to formalize and will satisfy all. Instead,
we will have to define task specific interestingness measures.

Foregoing any difficulties in defining a measure that correctly identifies what we
find interesting, the second key problem is the exponentially large search space. That
is, there are exponentially many potentially interesting patterns. Naively evaluating
these one by one and only reporting those that meet the criteria is hence infeasible
for all but the most trivial of pattern languages [3]. As such, in addition to correctly
identifying what is interesting, ideally an interestingness measure also defines a
structured, easily traversable search space to find these patterns.

A big breakthrough in this regard was made in 1994 with the discovery byAgrawal
and Srikant, and independently by Mannila, Toivonen, and Verkamo [1, 44], that the
frequency measure exhibits anti-monotonicity, a property frequently referred to as
the A Priori principle. In practice, this property allows to prune very large parts of the
search space, making it feasible to mine frequent patterns from very large databases.
In subsequent years, many highly efficient algorithms to this end were proposed
[78, 76, 26] (See also Chaps. 2 and 3).

Soon after the discovery of the A Priori principle people found that frequency
is not a very good measure for interestingness. In particular, people ran into the
so-called ‘pattern explosion’. While for strict thresholds only patterns expressing
common knowledge were discovered, for non-trivial thresholds the exponential space
of patterns made that incredibly many patterns were returned as ‘interesting’—many
of which only variations of the same theme.

In years since, many interestingness measures have been proposed in the literature
to tackle these problems; many for specialized tasks, pattern or data types, but we
also find highly general frameworks that attempt to approximate the ideal (subjective)
interestingness measure. In this chapter we aim to give an overview of the work done
in these respects. We will discuss a broad range of interestingness measures, as well
as how we can define efficient algorithms for extracting such patterns from data. In
order to keep the chapter focused and succinct we will restrict ourselves to measures
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for unsupervised, or exploratory, pattern mining in binary data—by far the most
well studied part of pattern mining. We do note up front, however, that many of the
discussed measures and algorithms are highly general and applicable to other settings.

We will discuss the topic in three main parts, loosely following the development of
the field over time. That is, in Sect. 2 we discuss relatively simple, absolute measures
of interest—of which frequency is a well-known example. As we will see, applying
these measures leads to problems in terms of redundancy, difficult parameterization,
as well as returning trivial results. In Sect. 3 we discuss, on a relatively high level, the
advanced approaches proposed aim to solve these problems. We discuss two of the
main proponents in Sects. 4 and 5. In the former we go into detail on approaches that
use statistical tests to select or rank patterns based on how significant they are with
regard to background knowledge. In the latter we cover the relatively new approach
of iterative pattern mining, or, dynamic ranking, where we iteratively update our
background knowledge with the most informative patterns so far.

We note that despite our best efforts, we did not find an ideal taxonomy over all
methods, as some methods exhibit aspects of more than one of these categories. In
such instances we choose to discuss them in the category they fit most naturally, yet
will identify alternate ways of looking at these papers. We identify open research
challenges and round up with conclusions in Sect. 7.

2 Absolute Measures

In this section we discuss relatively straightforward measures of interestingness. In
particular, we focus on what we call absolute measures. That is, measures that score
patterns using only the data at hand, without contrasting their calculations over the
data to any expectation using statistical tests.

More formally, in this section we consider a specific—and perhaps the most well-
known—class of pattern mining problems, viz., theory mining [45]. In this setting, a
pattern is defined as a description of an interesting subset of the database. Formally,
this task has been described by Mannila and Toivonen [43] as follows.

Given a database D, a language L defining subsets of the data, and a selection
predicate q that determines whether an element φ ∈ L describes an interesting subset
of D or not, the task is to find

T (L, D, q) = {φ ∈ L | q(D, φ) is true}
That is, the task is to find all interesting subsets.

2.1 Frequent Itemsets

The best known instance of theory mining is frequent set mining [3]. The standard
example for this is the analysis of shopping baskets in a supermarket. Let I be the
set of items the store sells. The database D consists of a set of transactions in which
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each transaction t is a subset of I . The pattern language L consists of itemsets, i.e.,
again sets of items. The support count of an itemset X in D is defined as the number
of transactions that contain X, i.e., suppD(X) = |{t ∈ D | X ⊆ t}|. We write frD(X)
to denote the relative support of X in D, i.e., frD(X) = suppD(X)/|D|. We do not
write D wherever clear from context.

The ‘interestingness’ predicate is a threshold on the support of the itemsets, the
minimal support: minsup. In other words, the task in frequent set mining is to
compute

{X ∈ L | suppD(X) ≥ minsup}
The itemsets in the result are called frequent itemsets.

Intuition The intuition behind this measure is simple: the more often an itemset
occurs in the data, the more interesting it is.

Frequent itemset mining was originally not a goal on itself, but merely a necessary
step in order to mine association rules [3]. There, the task is to discover rules X → Y ,
where X and Y are itemsets with X ∩ Y = ∅, such that when itemset X is a subset
of a row t ∈ D, X ⊂ t , with high confidence we will also see itemset Y ⊂ t . Such
rules express associations, possibly correlations, and can hence be useful in many
applications. A main motivation was supermarket basket analysis, the idea being that
by advertising X, people will also buy more of Y .

The basic strategy for mining association rules is to first mine frequent patterns,
and then consider all partitionings of each frequent itemset Z into non-overlapping
subsets X and Y , to form candidate rules X → Y , while finally keeping only
those association rules that satisfy some quality threshold [3]. Though an interesting
research topic on itself, interestingness measures for association rules are beyond
the scope of this chapter. We refer the interested reader to the recent survey by Tew
et al. [69].

A Priori With a search space of 2|I| patterns, the naive approach of evaluating
every pattern is infeasible. However, in 1994 it was discovered that support exhibits
monotonicity. That is, for two itemsets X and Y , we know

X ⊂ Y → supp(X) ≥ supp(Y ) ,

which is known as the A Priori property [1, 44], and allows for efficient search for
frequent itemsets over the lattice of all itemsets.

The A Priori algorithm was independently discovered by Agrawal and Srikant
[1], and by Mannila, Toivonen, and Verkamo [44]. It is a so-called candidate test
framework. Given a transaction database D over a set of items I and a support
threshold minsup, it first determines the set of singleton frequent itemsets F1 =
{i ∈ I | supp(i) ≥ minsup}. Then, given a set Fk of frequent patterns of length
k, we can construct the set Ck+1 of candidate frequent patterns of length k + 1, by
considering only itemsets that have all k sub-itemsets of length k included in Fk . We
then determine the supports of all candidates in one pass over the data, and obtain
Fk+1 by keeping only the candidates with supp(X) ≥ minsup.
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Fig. 5.1 A dataset of 4 items and 6 transactions and the corresponding lattice. The lattice shows the
free, non-derivable, and, for minsup = 2, the frequent itemsets. Closed itemsets are highlighted

As an example, consider Fig. 5.1, where we depict a toy dataset and the lattice of
all itemsets. Say we aim to mine all frequent itemsets with a minimal support of 2,
i.e., a minimum frequency of 2/6 = 1/3. The A Priori algorithm considers the lattice
level-wise, and first identifies the frequent singleton itemsets. Here, a, b, c, and d are
all frequent. It then constructs the candidate set by taking the Cartesian product with
the frequent singletons. In this example this is the full set of itemsets of cardinality 2,
i.e., C2 = {ab, ac, bc, ad , bd, cd}. We calculate the support of all candidates, and find
that all itemsets, except cd, are frequent, i.e., F2 = {ab, ac, bc, ad, bd}. Iterating to
the third level, we have C3 = {abc, abd}, as all other extensions of F2 contain cd, of
which we know it is not frequent, and hence neither will any larger itemset containing
it. We find that the two remaining candidates are frequent, F3 = C3. Finally, C4 = ∅
as there are no itemsets of size 4 that have all of their sub-itemsets of length 3 in F3.
Hence, the answer to the stated problem, the complete set of frequent itemsets for
minsup = 2, is hence F = {a, b, c, ab, ac, bc, ad , bd , abc, abd}.

The A Priori, or, perhaps more aptly named, level-wise algorithm can be applied
for any enumerable pattern language L and monotonic interestingness measure q.
Soon after the discovery of the A Priori property, we see three major focal points
for further research. In particular, a lot of attention was given to investigating more
efficient algorithms for mining frequent itemsets [24] (see also Chaps. 2 and 3),
methods that can mine frequent patterns from data types other than binary (see
Chap. 11), and third, on further measures of interestingness (this chapter).

Pattern Explosion Now armed with the ability to mine frequent itemsets in prac-
tice, researchers quickly found that frequency is not quite the ideal interestingness
measure. That is, we find that for high support thresholds only find patterns represent-
ing common knowledge are discovered. However, when we lower the threshold, we
are typically quickly flooded with such enormous amounts of results that it becomes
impossible to inspect or use them. Moreover, the result set is highly redundant: very
many of the returned patterns are simply variations of each other. Combined, this
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problem is known as the pattern explosion, and stems from the interplay of using a
monotonic interestingness measure, and asking for all frequent patterns.

We find many attempts in the literature aiming to solve the pattern explosion,
roughly divided between three main approaches. The first is to attempt to condense
the set of results. That is, we only want those patterns reported such that we can
infer (to certain extend) the complete set of frequent patterns. These interestingness
measures can hence also be regarded as extra constraints in addition to the frequency
constraint.

Maximal Frequent Itemsets In this vein, Bayardo proposed to mine maximal fre-
quent itemsets [6]: itemsets that are frequent and which cannot be extended without
their support dropping below the threshold. In the lattice, this comes down to re-
porting only the longest frequent pattern in each branch. In our example, the set of
maximal frequent itemsets for minsup = 2 is Fmax = {abc, abd}. Maximal frequent
itemsets are a lossy representation of the set of frequent itemsets in that all frequent
itemsets can be reconstructed, yet the individual frequencies are lost. While maximal
itemsets can be useful when we are interested in long patterns, we should be aware
that for very low support thresholds complete data records are returned—which beats
the purpose of pattern mining. Maximal frequent itemsets can be mined efficiently
using, e.g., the Max-Miner [6] and MAFIA [11] algorithms.

Closed Frequent Itemsets In contrast to maximal frequent itemsets, closed fre-
quent itemsets [52] provide a lossless representation of the frequent itemsets, as both
these itemsets and their frequencies can be reconstructed exactly. The definition of a
closed frequent itemset is an itemset X that is frequent, supp(X) ≥ minsup, and of
which there exists no extension for which the support remains the same, i.e., there is
no Y � X such that supp(Y ) = supp(X). Following this definition, in our example,
the set of closed frequent itemsets consists of Fclosed = {a, ab, abc, abd}, which
is smaller than the complete set of frequent itemsets, yet larger than for maximal
itemsets. Efficient algorithms for mining closed frequent itemsets include Charm
[77].

Given a set of closed frequent itemsets Fclosed , we can determine the support of
any frequent itemset X ∈ F with ease. That is, for a given itemset X, we simply find
the smallest superset Y ∈ Fclosed , with X ⊆ Y , and return the support of Y . If no
such superset exists in Fclosed , X is not frequent. As such, we essentially derive the
frequency of X using a very simple rule.

Free Frequent Itemsets Closed itemsets can be seen as the maximal itemsets having
among the itemsets having the same support. Closely related are free sets [9], which
are the minimal itemsets among the itemsets having the same support, that is, an
itemset X is free if there is no Y � X such that supp(X) = supp(Y ). Each free
itemset X has a unique closure Y , a closed itemset Y such that X ⊆ Y . However, a
closed itemset may stem from many free itemsets. This means that free itemsets will
always be a larger collection than closed itemsets. Free itemsets are handy since they
form a monotonically downward closed collection, that is, all sub-itemsets of a free
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itemset are also free. In our example, frequent free itemsets are Ffree = {a, b, c, d}.
Itemset cd is also free but it is not frequent.

Non-Derivable Itemsets Calders and Goethals [12] developed the notion of support
derivability a step further, and proposed to mine non-derivable frequent itemsets. An
itemset is said to be derivable if we can derive its support using inclusion/exclusion
rules, i.e., the upper and lower bound of its support are equal. In our example, abc is a
derivable itemset: since supp(bc) = supp(c) = 2 we know that whenever c appears,
b appears as well. Hence, it follows that supp(abc) = supp(ac) = 2. In our example
the set of non-derivable itemsets for minsup = 2 is Fndi = {a, b, c, ab, ac, bc}.
Like free itemsets, non-derivable itemsets are also monotonically downward closed,
which allows us to mine them efficiently.

In practice, for a given database and threshold the number of closed itemsets and
non-derivable itemsets is typically comparable; how many exactly depends on the
structure of the data. In both cases, for clean data, up to orders of magnitude fewer
itemsets are returned than when mining frequent itemsets. However, if the data is
noisy, it can be that no reduction can be obtained and we still find millions or billions
of itemsets for non-trivial thresholds.

Margin-Closed and Robust Frequent Itemsets Moerchen et al. [50] hence argues
to prune more aggressively, and to this end proposes to relax the requirement on
maintaining frequencies exactly. That is, to mine margin-closed frequent itemsets;
essentially reporting only those frequent itemsets for which the support deviates more
than a certain amount compared to their subsets. A related, but different approach
was recently proposed by Tatti and Moerchen [66], whom acknowledge the data
at hand is just a sample; whether a given itemset is frequent, maximal, closed, or
non-derivable may just be happenstance. To this end they propose to mine only those
itemsets that exhibit a given property robustly, i.e., in many random subsamples of
the data. For example, the idea is that in the more (sub)samples of the data we find a
certain itemset to be closed, the more informative it is to report this particular itemset
to the end-user. A happy coincidence of robustness is that the monotonicity of the
chosen property propagates. That is, if the property is monotonic, for example, non-
derivability or freeness, the robust version is also monotonic, and hence for those
measures we can mine robust itemsets efficiently.

Sampling Frequent Itemsets We should stress that A Priori works for any mono-
tonic measure, for example, the Jaccard-distance based measure Cohen et al. [14]
propose,

supp(X)/|{t ∈ D | X ∩ t �= ∅}|,
the support of the itemset divided by the number of transactions that share at least
one element with X. However, while monotonic, in practice A Priori is impractical
for this measure: we cannot prune any singletons, and hence have F1 = I, by which
already at the first step we have to check all itemsets of size 2. To circumvent this
problem, Cohen et al. first of all consider only itemsets of length 2, and, only calculate
the actual score for a sample of the complete candidate set. However, because of the
exponential search space, to avoid mining mostly itemsets with very low scores,
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one will have to be careful what distribution to sample from. Cohen et al. sample
according to a hash-based score that estimates the correlation between two items. In
theory this approach can be extended to itemsets of arbitrary sizes, but will require
a non-trivial extension of this estimate.

A possible solution to this end may have been given by Boley et al. [7], whom
proposed a framework that allows to directly sample itemsets proportional to any
score based on frequency and/or cardinality of a pattern. However, the more different
‘components’ a score has, the more computationally expensive the pre-processing
becomes. In a follow-up paper [8], the same authors refined the procedure and
removed the need for this pre-processing by formalizing a coupling-from-the-past
MCMC sampler.

Al Hassan and Zaki [4] proposed a different approach that allows for directly
sampling the output space of any pattern miner. While the paper discusses patterns in
graphs, the same techniques can be applied for mining itemsets. In follow-up work
they discuss Origami [5], an approach to sample patterns that are representative,
as well as orthogonal to earlier sampled patterns. By sampling patterns not just
proportionally to a static distribution, but with regard to earlier sampled results, this
process comes rather close to dynamic ranking, which we will discuss in more detail
in Sect. 5.

2.2 Tiles

The next class of absolute interestingness measures we consider are not for itemsets,
but for tiles. In tile mining we are particularly interested in the area a pattern covers
in the data. That is, L consists of tiles T = (X, Y ) which are defined by both an
intention, a subset of all items X ⊆ I, as well as an extension, a subset of all rows
Y ⊆ R. We then use q to calculate the interestingness over the cells of D identified
by X × Y .

Large Tile Mining The most constrained variant of this task is to mine exact tiles,
tiles for which in D we find only 1s, that meet a minarea threshold. That is, tile
for which area(T ) = |X||Y | ≥ minarea. A maximal tile is then a tile T for which
we cannot add an element to X or Y , and updating the vice-versa to maintain the
all-1s constraint, without the area(T ) decreasing. Note that as area does not exhibit
monotonicity, the level-wise algorithm cannot be applied.

Intuition Large areas of only 1s in D are interesting.
Geerts et al. [21], however, gave a set of constraints that can be used to mine large

tiles efficiently in practice; essentially implementing the greedy algorithm for Set
Cover [21]. It is interesting to note that every large tile is a closed frequent itemset,
an observation Xiang et al. [74] used in their algorithm, first mining closed frequent
itemsets and then pruning this set.

Noise and large tile mining do not go together well. That is, given a dataset in
which there exists one large tile against an empty background, simply by flipping
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one 1 to 0 makes it that the complete tile will not be discovered; instead we will find
two partitions. Every further flipped value will partition the tile more.

More in particular, it may not be realistic to expect a process to generate a tile full
of ones. Instead, we may need to relax our requirement and look for noisy, or dense
tiles instead of exact tiles.

Noisy Tile Mining A noisy tile is a tile T associated with a frequency of ones in
the data, for which we write, slightly abusing notation,

fr(T ) = |{(i, j ) ∈ (X × Y ) | Dij = 1}|
|X||Y | .

An exact tile then is a special case, with f r(T ) = 1.0. When mining noisy tiles we
are interested in finding large areas in the data that contain many 1s, or possibly,
many 0s.

Intuition The more uniform the values of D over the area identified by T , i.e., the
more 1s resp. 0s we find, the more interesting the tile.

We find the problem of mining noisy tiles in many guises and embedded in many
problem settings. Examples include dense itemset mining [60], dense tile mining
[75], bi-clustering [55], and Boolean Matrix Factorization [49, 40], as well as fault-
tolerant itemset mining [54].

Fault tolerant itemset mining for a large part follows the regular frequent itemset
mining setting, with, however, the twist that we do not just calculate support over
t ∈ D for which X ⊆ t , but also those transactions that nearly but not exactly
support t . The general approach is that, per itemset X, we are given a budget of ε

1s that we may use to maximize the fault-tolerant support of X [54]. Clearly, a fixed
budget favors small itemsets, as there per row fewer items can be missing. Poernomo
and Gopalkrishnan [56] gave an efficient algorithm for mining fault-tolerant itemsets
where the budget is dependent on the cardinality of the itemset.

Seppänen and Mannila [60] generalized the problem of ε fault-tolerant itemset
mining to dense itemset mining. That is, instead of using a fixed budget of flips, the
proposed algorithms mine itemsets for which we there exist at least σ rows such that
the density of 1s in the data projected over the itemset is at least δ.

In Boolean Matrix Factorization the goal is to find a low-rank approximation of the
full data matrix. Optimizing, as well as approximating this problem is NP-hard [49],
and hence the standard approach is to iteratively find good rank-1 approximations of
the data, i.e., large noisy tiles with high frequency. The Asso algorithm does this by
searching for tiles that exhibit high association between the rows and columns, and
has been shown to efficient heuristic for finding large noisy tiles [49].

Frequent itemsets can be used to bootstrap the search for dense areas in the data.
Xiang et al. [75] gave a fast heuristic for finding dense tiles that first mines closed
itemsets, and then iteratively combines them until a density threshold is reached. We
find a similar strategy in the PandA algorithm [40].
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2.3 Low Entropy Sets

The final absolute measure for interestingness we discuss is entropy. Whereas many
of the above measures put explicit importance on the associations between 1s in the
data, by ignoring or penalizing 0s. This, however, ignores the fact that there may
be interesting associations in the data between both the 1s and the 0s. Heikinheimo
et al. [30] hence argue to put equal importance on both 0/1, and instead of mining
frequent itemsets, propose to mine itemsets for which the counts of the contingency
table are highly skewed. That is, for an itemset X we calculate the support of all of
its 2|X| instances, and calculate the entropy over these counts. The score is minimal
(0) when only one instance occurs in the data, e.g., if for itemset X = abc if we find
supp(abc = 110) = |D|, while the score is maximal (|X|) when all instances have
the same support.

Intuition An itemset X is interesting if the distribution of the data is highly skewed,
i.e., either highly structured or very random.

Using this score, which exhibits monotonicity, we can use the level-wise algorithm
to efficiently mine either low entropy sets, if one is interested in highly structured
parts of the data, or to mine high entropy sets if one is interested in identifying the
most random parts of the data. Mampaey [41] proposed to speed up the mining by
using inclusion-exclusion, making use of the fact that in practice only a fraction of
all 2|X| possible instances of X occur in the data. The μ-Miner algorithm provides a
speed-up of orders of magnitude compared to the level-wise algorithm.

3 Advanced Methods

Though each of the methods described above has nice properties, we find that in
practice they do not perform as well as advertised. In general, we find that all absolute
measures identify far too many results as interesting, with or without condensation.
The key problem is redundancy. Absolute measures have no means of identifying
whether the score for a pattern is expected, nor are they able to prune variants of
patterns that identify single statistically significant concepts.

We identify three main lines of research aimed at tackling these problems, or in
other words, aimed at identifying more interesting patterns. A common theme in
these approaches is the reliance on statistical analysis. The main difference between
these methods and the methods described in the previous section is that in order to
rank patterns we impose a statistical model on our data, and measure how interesting
are the patterns given that model.

We can divide the methods into three rough categories:

1. Static pattern ranking. Here we assume that we know a simple statistical model,
derived from a simple background information. We assume that this model is
well-understood, and any pattern that is well-explained by this model should be
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discarded. Consequently, we are interested in patterns that the model considers
very unlikely.

2. Iterative pattern ranking. While static pattern ranking addresses the problem of
redundancy with respect to background knowledge, it does not explicitly address
the problem of redundancy between patterns. We can approach this problem more
directly with dynamic ranking: At the beginning we start with a simple model and
find the most surprising pattern(s). Once this pattern is identified, we consider it
‘known’ and insert the pattern into our model, which updates our expectations—
and repeat the process. As a result we get a sequence of patterns that are surprising
and non-redundant with regard to the background knowledge and higher ranked
patterns.

3. Pattern set mining. The methods in the above categories measure interesting-
ness only per individual pattern. The third and last category we consider aims at
identifying the best set of patterns, and hence propose an interestingness measure
over pattern sets. As such, these measures directly punish redundancy—a pattern
is only as good as its contribution to the set.

4 Static Background Models

In Sect. 2 we discussed absolute interestingness measures, which we can now say
are essentially only based on counting. In this section we will cover slightly more
advances measures. In particular, we will discuss measures that instead of rely-
ing just on absolute measurements, contrast these measurements with the expected
measurement for that pattern. The basic intuition here is that the more strongly the
observation deviates from the expectation, the more interesting the pattern is.

Clearly, there are many different ways to express such expectation. Most often
these are calculated using on a probabilistic model of the data. Which model is
appropriate depends on the background knowledge we have and/or the assumptions
we are willing to make about the data. As such, in this section we will cover a wide
range of different models that have been proposed to formalize such expectations.

However, in order to be able to identify whether a pattern is interesting, we need
to be able whether the deviation between the observation and the expectation is large
enough. That is, whether the deviation, and hence correspondingly the pattern, is
significant or not. To this end we will discuss a variety of (statistical) tests that have
been proposed to identify interesting patterns.

For clarity, we will start our discussion with the most simple model, the inde-
pendence model. We will then use this model as an example to discuss a range of
significance measures. We will then proceed to discuss more complex models, that
can incorporate more background knowledge, for which many of these tests are
also applicable. Interleaved we will also discuss interestingness measures specific to
particular models and setups.

Before we start, there is one important observation to make. As opposed to the
previous section, the measures we will discuss here are typically not used to mine
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all interesting patterns. This is mostly due to that these measures are typically not
monotonic—and hence do not easily allow for efficient search—as well as that it
is often difficult to express a meaningful threshold (i.e., significance level). Instead,
these measures are used to rank a given collection of patterns, e.g., mined all frequent
patterns up to a certain support threshold, or, when practical bounds are available, to
mine a top-k of the most significant patterns. Many of the authors of work we survey
in this section argue that in practice analysts do not want, nor have time, to consider
all patterns, and hence a small list of the most interesting patterns is preferable.

4.1 Independence Model

We start with the simplest background model, which is the model where we assume
that the individual items are all independent. Under this assumption we expect the
frequency of a given itemset X = x1 · · · xn to be equal to

ind(X) =
n∏

i=1

fr(xi) .

The background knowledge we use are simply the frequencies of the individual
items, which can be straightforwardly computed from the data. Moreover, it seems
reasonable to expect to expect the data analyst (e.g., store manager) to know these
margins (e.g., how often each product is sold) and hence be able to make such infer-
ences intuitively. As such, the independence model is expected to correctly identify
‘boring’ patterns, patterns for which the frequencies follow under the independence
model.

Testing Observations against Expectations Now that we have a model, we will
use it as an exemplar to discuss a range of widely used methods for comparing the
observed measurement with the expectation. After covering these general methods,
we will discuss more detailed models, and more specialized measures.

With the above, we can compute both the observed frequency f r(X) and the
expectation ind(X) of the independence model. The next step is compare these two
quantities. A straightforward way to do this is to consider their ratio, a measure
known as lift [33], and formally defined as

lift(X) = fr(X)/ind(X).

Here we consider itemsets that have a high lift to be interesting, that is, itemsets
whose observed support is substantially higher than the independence assumption.
Hence, a larger ratio implies higher interestingness.

In our example, we have f r(ab) = 0.66, while under the independence model we
have ind(ab) = 5×4

6×6 = 0.55. As such, we find lift(ab) = 1.2. For abc, on the other
hand, we have lift(abc) = 0.33/0.18 = 1.83. While both patterns have a positive lift
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score, and are hence potentially interesting, the higher score for abc identifies this
pattern as the most interesting of the two.

In this example the outcome follows our intuition, but in practice this is not always
the case: lift is a rather ad-hoc score. This is due to it comparing the two absolute
values directly, without taking into account how likely these values, or their ratio is,
given the background model.

We can, however, also compare the deviation by performing a proper statistical
test. In order to do so, note that according the independence model the probability of
generating a transaction containing an itemset X is equal to ind(X). Assume that our
dataset contains N transactions, and let Z be a random variable stating in how many
transactions X occurs. The probability that Z = M is equal to binomial distribution,

p(Z = M) =
(

N

M

)
qM (1 − q)N−M , where q = ind(X) .

Now that we have this probability, we can perform a one-sided statistical test by
computing the probability that we observe a support of f r(X) or higher, p(Z ≥
Nf r(X)). Note that the larger f rX, the smaller the p-value is.

Computing the right-hand side amounts to computing a sum of probabilities
p(Z = M), which as there are 2|Z| possible values for M, may prove to be re-
strictively slow in practice. However, as exactly in those cases binomial distributions
are accurately approximated by a normal distribution, we can perform an alterna-
tive test by considering a normal approximation of the binomial distribution. In this
case, we can obtain the p-value by computing the tail of the normal distribution
N
(
Nq,

√
Nq(1 − q)

)
, where q = ind(X). This is estimate is inaccurate if q is very

close to 0 or 1 and N is small. One rule of thumb is that if Nq > 5 and N (1 − q),
then this approximation is fairly accurate.

4.1.1 Beyond Frequency

So far, we only considered comparing the frequency of an itemset against its expected
value. Clearly, we do not have to limit ourselves to only this measure (or, better,
statistic).

Related to fault-tolerant itemsets we saw in Sect. 2, we can say that an itemset X

is a violation of a transaction t if t does not contain X, X /∈ t , yet t does contain
some elements from X, t ∩ X �= ∅. We denote the fraction of transactions being
violated by X as v(X). The quantity 1 − v(X) is then a fraction of transactions that
either contain (X) or do not contain any items from X. If items are highly correlated
we expect 1 − v(X) to be high and v(X) to be low.

Now, let q be the expected value of v(X) based on the independence model. We
can now calculate what Aggarwal and Yu call [2] the collective strength of a pattern
as follows

cs(X) = 1 − v(X)

v(X)
× q

1 − q
.

In other words we compare the ratio of 1−v(X)
v(X) against the expected value.
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4.1.2 Beyond Single Measurements

Instead of comparing just a single statistic, like support or the violation rate, we
can consider much richer information. One example is to compare the complete
contingency table of an itemset X with an expectation [10].

Assume we are given a distribution p over items in X = x1 · · · XM . That is, a
distribution over 2|X| entries. For convenience, let us write

p(X = t) = p(x1 = t1, . . . , xM = tM ),

where t is a binary vector of length M . We now consider two different distributions:
the first is the empirical distribution computed from the dataset,

pemp(X = t) = |{u ∈ D | uX = t}|
|D| ,

and the second, pind , is the independence model,

pind (X = t) =
M∏
i=1

pind (xi = ti) ,

where the margins (item frequencies) are computed from the input data.
The standard way of comparing these two distributions is by doing a so-called

G-test, which essentially is a log-likelihood ratio test,

2
∑
t∈D

log pemp(X = tX) − 2
∑
t∈D

log pind (X = tX) .

Under the assumption that the items of X are distributed independently (which we
here do), this quantity approaches the χ2 distribution with 2|X| − 1 − |X| degrees of
freedom. Interestingly, this quantity can also be seen as a (scaled) Kullback-Leibler
divergence, 2|D|KL(pemp||pind).

Alternatively, we can also compare the two distributions with Pearson’s χ2 test,

|D|
∑

t∈{0,1}|X|

(pemp(X = t) − pind (X = t)2)

pemp(X = t)
,

which has the same asymptotic behavior as the G-test.
Each of these tests can be used to determine the p-value, or likelihood, of a pattern

under an assumed model. In practice these measurements are used to rank the patterns
from most surprising (under the model) to least surprising, typically showing the user
only the top-k of most surprising patterns.

Next we will now look into more elaborate models, which allow us to make more
realistic assumptions about the data than complete independence.
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4.2 Beyond Independence

While the independence model has many positive aspects, such as ease of compu-
tation, intuitive results, as well as interpretability, it is also fair to say it is overly
simplistic: it is naive to assume all item occurrences are independent. In practice, we
may want to take known interaction into account as background knowledge.

4.2.1 Partition Models

With the goal of mining interesting associations, Webb [73] discusses 6 principles
for identifying itemsets that are unlikely to be interesting, and to this end proposes
to check whether the frequency of an itemset X can either be closely determined by
assuming independence between any of its partitions, or by the frequency of any of
the supersets of X.

The so-called partition model which is needed to perform these tests is a natural
generalization from the independence model. More specifically, if we are given an
itemset X, consider a partition P = P1, . . . , PM of X, with

⋃M
i=1 Pi = X, and

Pi ∩ Pj = ∅ for i �= j . Under this model, we expect the support of an itemset to be
equal to the product of the frequencies of its parts, i.e.,

∏M
i=1 f r(Pi). It is easy to see

that for the maximal partition, when the partition contains only blocks of size 1, the
model becomes equal to the independence model.

We can now compare the expected values and the observations in the same way we
compared when were dealing with the independence model. If the partition contains
only 2 blocks, M = 2, we can use Fisher’s exact test [19]. While not monotonic,
Hamalainen [25] recently gave a practical bound that allows to prune large parts of
the search space.

To use the partition model we need to choose a partition. To do so, we can either
construct a global model, i.e., choose a fixed partition of I, or we can construct a
local model in which the actual partition depends on the itemset X. As an example of
the latter case we can consider find the partition of size 2 that best fits the observed
frequency [72].

4.2.2 Bayesian Networks

Another natural extension of the independence model are Bayesian networks, where
dependencies between items are expressed by a directed acyclic graph. In general,
computing an expected support from a global Bayesian network is NP-hard problem,
however it is possible to use the network structure to your advantage [15]. Additional
speed-ups are possible if we rank itemsets in one batch which allows us to use share
some computations [34].

Clearly, the partition model is mostly a practical choice with regard to com-
putability and allowing the Fisher test; it does not allow us to incorporate much more
knowledge than the independence model. Bayesian networks are very powerful, on
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the other hand, but also notoriously hard to infer from data. More importantly, they
can be very hard to read. Unless we use very simple networks, it is possible our
model can make inferences that are far from the intuition of the analyst, and hence
prune itemsets that are potentially interesting. Next we discuss a class of models that
can circumvent these problems.

4.3 Maximum Entropy Models

In general, for any knowledge that we may have about the data, there are potentially
infinitely many possible distributions that we can choose to test against: any distribu-
tion that satisfies our background knowledge goes. Clearly, however, not all of these
are an equally good choice. For example, say that all we know about a certain row
in the data is that it contains 10 ones out of a possible 100 items. Then, while not
incorrect, a distribution that puts all probability mass on exactly one configuration
(e.g., the first 10 items), and assigns probability 0 to all other configurations, does
make a choice that intuitively seems unwarranted given what we know. This raises
the question, how should we choose the distribution to test against?

The answer was given by Jaynes [35] who formulated the Maximum Entropy prin-
ciple. Loosely speaking, the MaxEnt principle states that given some background
knowledge, the best distribution is the one that (1) matches the background knowl-
edge, and (2) is otherwise as random as possible. It is exactly this distribution that
makes optimal use of the provided background knowledge, while making no further
assumptions.

4.3.1 MaxEnt Models for Transactions

As an example, let us discuss the MaxEnt model for binary data, in which we can
incorporate frequencies of itemsets as background knowledge. Formally, let K be
the number of items, and let � be the space of all possible transactions, that is,
� = {0, 1}K is a set of binary vectors of length K . In order to compute the expected
support of an itemset, we need to infer a distribution, say p, over �.

Our next step is to put some constraints on what type of distributions we consider.
More formally, we assume that we are given a set of functions S1, . . . , SM , Si : �R,
accompanied with desired values θi . Now let us consider a specific set of distributions,
namely

Q = {p | Ep[Si] = θi , i = 1, . . . , M},
where Ep[Si] is the expected value of Si w.r.t. p,

Ep[Si] =
∑
ω∈�

p(ω)Si(ω) .

In other words, Q consists of distributions for which the average value of Si is equal
to θi .
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Apart from border cases, Q will typically be very large and may even contain in-
finitely many distributions. We need to have one distribution, and hence our next step
is to choose one from Q. We do this by the Maximum Entropy principle. Formally,
we identify this distribution by

p∗ = arg max
p∈Q

−
∑
ω∈�

p(ω) log p(ω),

where the standard convention 0 × log 0 = 0 is used.
Besides nice information-theoretical properties, the maximum entropy distribu-

tion also has many other interesting and practical properties. For instance, it has a
very useful regular form [16].

First consider that for some ω ∈ �, every distribution p ∈ Q has p(ω) = 0. Since
p∗ ∈ �, this immediately implies that p∗(ω) = 0. Let us define Z be the set of such
vectors Z = {ω ∈ � | p(ω)for allp ∈ Q}. The probability of the remaining points
� \ Z can be expressed as follows: there is a set of numbers r0, . . . , rM , such that

p∗(ω) = exp
(
r0 +

M∑
i=1

riSi(ω)
)

for ω ∈ � \ Z. (5.1)

The coefficient r0 acts as a normalization constant. This form is the well-known
log-linear model.

Now that we have established the general form of the maximum entropy model,
let us look at some special cases of background information.

Assume that we do not provide any constraints, then the maximum entropy dis-
tribution will be the uniform distribution, p(ω) = 1/|�|. Consider now that we limit
ourselves by setting K constraints, one for each item, Si(ω) = ωi . Then, E[Si] is
the ith column margin, and we can show by simple manipulation of Eq. 5.1 that p∗
corresponds to the independence model.

Consider now the other extreme, where we provide 2K − 1 constraints, one for
each non-empty itemset, by setting SX(ω) to be 1 if ω contains X, and 0 otherwise.
We can show using inclusion-exclusion tricks that there is only one distribution in Q.
If the corresponding targets θX were computed from a dataset D, then p∗ is equal to
the empirical distribution pemp computed from D, pemp(ω) = |{t ∈ D | t = ω}|/|D|.

Consider now that we do not use all itemset constraints. Instead we have a partition
P and our itemset constraints consists only of itemsets that are subsets of blocks of
P . In this case, p∗ will have independent items belonging to different blocks. In other
words, p∗ is a partition model. Another example of non-trivial itemset constraints is a
set consisting of all singleton itemsets and itemsets of size 2 such that these itemsets
form a tree when viewed as edges over the items. In such case, p∗ corresponds to
the Chow-Liu tree model [13], a special case of Bayesian network where items may
have only one parent. As an example of constraints not related to itemsets, consider
Tk(t), being equal to 1 if and only if t contains k 1 s, and 0 otherwise [65]. In such
case, ETk is the probability that a random transaction has k 1s.

All the cases we describe above have either closed form or can be computed
efficiently. In general we can infer the MaxEnt distribution using iterative approaches,



122 J. Vreeken and N. Tatti

such as iterative scaling or a gradient descent [16]. The computational bottleneck
in these methods is checking the constraints, namely computing the mean ES, a
procedure that may takeO(|�|) = O(2K ) time.As such, solving the MaxEnt problem
in general for a given set of itemset constraints is computationally infeasible [63].
However, let us recall that in this section we are computing the distribution only to
rank itemsets. Hence, we can limit ourselves by considering constraints defined only
on items in X, effectively ignoring any item outside X [64, 46, 53]. This effectively
brings down the computational complexity down to a much more accessible O(2|X|).

4.3.2 MaxEnt and Derivability

Once inferred, we can compare the expectation to the observed supports using the
same techniques as we developed above for the independence model. Moreover,
there exists an interesting connection between the MaxEnt model and derivability
of the support of an itemset. More specifically, for a given itemset X, the MaxEnt
model derived using proper subsets of X shares a connection with the concept of non-
derivable itemsets. An itemset is derivable if and only if its frequency can be deduced
from the frequencies of its subsets. This is only possible when any distribution p ∈ Q

produces the same expectation Ep[SX] as the observed support. This immediately
implies that the expected support according to pemp is exactly the same as observed
support. In summary, if an itemset is derivable, then a MaxEnt model derived from
its subsets will produce the same expectation as the observed support.

4.3.3 MaxEnt Models for Whole Databases

So far we have considered only models on individual transactions. Alternatively, we
can consider models on whole datasets, that is, instead of assigning probabilities to
individual transactions, we assign probability to whole datasets. The space on which
distribution is defined is now � = {0, 1}N×K , where K is the number of items and N

is the number of transactions, that is, � contains all possible binary datasets of size
N ×K . Note that under this model N is fixed along with K , where as in transaction-
based model only K is fixed and we consider dataset to be N i.i.d. samples. That is,
while above we considered the data to be a bag of i.i.d. samples, we here assume
the whole dataset to be one single sample. As such, different from the setting above,
here which rows support an itemset are also considered to be of interest—and hence,
the background knowledge should not just contain patterns, but also their row-sets.

In other words, we can use tiles as constraints. Given a tile T , let us write ST (D)
for the number of 1s in entries of D corresponding to T . The mean E[ST ] is then the
expected number of 1 s in T . Note that we can easily model column margins using
tiles, simply by creating K tiles, ith tile containing ith column and every row. We
can similarly create row margins. The maximum entropy model derived from both
rows and margins is known as Rasch model [57].
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Unlike with transaction-based MaxEnt model and itemsets as constraints, discov-
ering the MaxEnt for a set tiles can be done in polynomial time. The reason for this
is that tile constraints allow us to factorize the model into a product of individual
cells, which in turns allows us to compute the expectations E[ST ] efficiently.

We can use the Rasch model to rank tiles based on the likelihood, that is, the
probability that a random dataset will obtain the same values in T as the original
dataset. We can show that this is equal to

∏
(i,j )∈T

pemp(Rij = Dij ),

where Dij is the (i, j )th entry of the input dataset and R is the variable representing
(i, j )th entry in a dataset. The smaller the probability, the more surprising is the
tile according to the Rasch model. Unfortunately, this measure is monotonically
decreasing. Consequently, the most interesting tile will contain the whole dataset. In
order to remedy this problem, Kontonasios and De Bie [37] propose an normalization
approach inspired by the Minimum Description Length principle [58], dividing the
log-likelihood of the tile by its description length, roughly equal to the size of the
transaction set plus the size of the itemset.

4.4 Randomization Approaches

So far, we compute expected frequencies by explicitly inferring the underlying
distribution. However, we can avoid this by sampling datasets.

More formally, let � be the set of all possible binary datasets of size N × K ,
� = {0, 1}N×K . Many of these datasets are not realistic, for example � contains a
dataset full of 1 s. Hence, we restrict our attention to datasets that have the same
characteristics as the input dataset. One particular simple set of statistics is a set
containing row and column margins. Assume that we have computed the number of
1s in each row and column. Let us write ci for the number of 1 s in ith column, and
rj , the number of 1 s in j th row. Now consider, �′ to be a subset � containing only
the datasets that have the column margins corresponding to {ci} and row margins
corresponding to {rj }. Consider a uniform distribution over �′. We can now use this
distribution to compute the expected value of a pattern. Such a distribution is closely
related to the Rasch models explained previously. However, there are some technical
differences. Datasets sampled from �′ are forced to have certain row and column
margins exactly while with Rasch models row and column margins are only forced
on average. This, however, comes at a cost.

The uniform distribution over �′ is very complex and, unlike the Rasch model,
cannot be used directly. To remedy this problem we will have to sample datasets.
Sampling �′ from scratch is very difficult, hence we will use a MCMC approach
[23, 29]. Given a dataset D from �′, we first sample two columns, i and j , and two
rows x and y. If it happens that out of four values Dix , Djx , Diy , and Djy , two are
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Fig. 5.2 An example of swap
randomization
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1 s and two are 0 s, and both ones are in opposite corners, see Fig. 5.2, then we
swap Dix with Diy and Djx with Djy . It is easy to see that the new dataset will have
the same row and column margins. By repeating this process many times, i.e., until
the MCMC chain has converged, we can generate random datasets simply by starting
the random walk from the input dataset. Note that in practice, however, we do not
know when the MCMC chain has converged, and hence have to use a heuristic
number of steps to reach a ‘random’ point in �′.

By sampling many random datasets, we can assess how significant a score ob-
tained on the original data is in light of the maintained background knowledge by
computing an empirical p-value—essentially the fraction of sampled datasets that
produce higher support of an itemset X than the original support. The number of
sampled datasets hence determines the resolution of the p-value.

In short, the (swap-)randomization and MaxEnt modelling approaches are very
related. The former can be used to sample data that maintains the background knowl-
edge exactly, while in the latter information is only maintained on expectation. The
latter has the advantage that exact probabilities can be calculated. By sampling
random data, whether by randomization or from a MaxEnt model, we can obtain
empirical p-values—also for cases where by the nature of the score we’re looking
at (e.g., clustering error, classification accuracy, etc), it is impossible, or unknown,
how to calculate exact values given a probabilistic model.

5 Dynamic Background Models

So far, we have covered only static scores. While within this class method have been
proposed that are increasingly good at correctly identifying uninteresting patterns,
they can only do so for individual patterns and with regard to a static background
model. As such, when regarding the top-k result, we may still find patterns that are
mostly variants of the same (significant) theme. In this chapter we turn our attention
to models that explicitly take relationships between patterns into account.
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Note, however, that some of the static models already do this to some extend. For
example, the partition model studies subsets of the itemset under investigation. They
do not, however, necessarily take all higher ranked itemsets into account.

In general, we can divide the dynamic approach into two categories. The first
category is iterative pattern mining, where the goal is to greedily build a sequence
of patterns, each pattern being the most surprising given the previous patterns and
background knowledge. This is the class we discuss in this chapter. The second
category is pattern set mining. There the goal is to produce a set of patterns that
together optimize a given score over the whole set, as opposed to scoring patterns
only individually. We will discuss pattern set mining in the next chapter.

Both categories have many technical similarities and share algorithmic ap-
proaches. In fact, some methods are difficult to pigeonhole as they can perform
both tasks. The main difference we identify is that in pattern set mining we are look-
ing for a set of patterns, that is, we need to control the number of patterns, whereas
in iterative pattern ranking, we are ‘simply’ ranking patterns.

5.1 The General Idea

The main ingredient needed to perform iterative pattern mining, as opposed to static
ranking, is a model that we can update. In particular, we need a model that can
incorporate background knowledge in the same shape as what we’re mining: patterns.

As such, the general approach here is that in the first iteration we infer the model
p1 according to the basic background knowledge B1 we may have about the data. We
then rank all patterns accordingly, and select the top-k best scoring/most interesting
patterns, X1 = {X1, . . . , Xk}. We assume the analyst will investigate these in detail,
and hence that now onward we may regard these patterns and what can be derived
from them as ‘known’. As such, we update our background knowledge with X1, and
hence for iteration 2 have B2 = B1 ∪X1, for which we infer model p2. We then rank
all patterns accordingly, etc, until we’re done.

Next we will discuss three methods that allow for dynamic ranking.

5.2 Maximum Entropy Models

Maximum Entropy models, which we’ve met in the previous section, provide a
natural way of constructing a probabilistic model from a given set of itemsets and
their frequencies: essentially, each itemset is a constraint. As the technical details of
how to infer a model under such constraints are beyond the scope of this chapter,
and we refer the interested reader to, for example, Pavlov et al. [53].

Given a model that can incorporate itemsets and frequencies as background knowl-
edge, we need to define a score for ranking candidates. We can use the statistical
tests from Sect. 4, but a more intuitive approach is to use the likelihood of the data
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under the model. That is, the typical goal in dynamic ranking is to find a ranking that
of which the top-k is the best explanation of the data in k terms.

To this end we construct a score in a post-hoc fashion. That is, we score a candidate
on how much information we would gain if we would include it in the background
knowledge. We do this as follows.

In general, given a set of itemsets F , and a set of target frequencies θX for every
X ∈ F as background knowledge, we can construct a MaxEnt model p∗ such that
E[SX] = θX for every X ∈ F . In turn, we can use the likelihood p∗(D | F) to score
the quality of F . In other words, the better p∗ can predict all frequencies the more
likely is the data according to p∗, the better is the collection is F . To be more precise,
we know that p∗(D | F ∪{Y }) ≥ p∗(D | F) and, as a special case, the equality holds
whenever the observed frequency of Y is exactly equal to the expectation derived
from F . Moreover, the score increases as the observed frequency of Y becomes more
distant from the expected value.

Given this likelihood score we can evaluate how informative a pattern Y is about
the data in addition to our background knowledge. The question now is, how can
find good rankings and pattern sets efficiently?

Wang and Parthasararthy [71] take a pre-mined collection of frequent itemsets as
candidates, and consider these in level-wise batches. That is, they first consider the
itemsets of size 1, then of size 2, and so on. Per batch they select all itemsets for
which the predicted frequencies (L1 distance) deviates more than a given threshold,
and add all of these to the background knowledge, after which they update the model
and iterate to the next level. In order to make the ranking feasible, i.e., to get around
the NP-hardness of inferring frequencies from the MaxEnt model, the authors sample
frequencies instead of inferring them exactly.

Alternatively, Mampaey et al. [42] iteratively mine the top-most informative pat-
tern, regardless of its cardinality. To do so efficiently, they propose an efficient convex
bound which allows many candidate patterns to be pruned, as well as a method for
more efficiently inferring the MaxEnt model using a quick inclusion/exclusion based
approach. NP-hardness problems are here circumvented by partitioning the model,
either explicitly such that only patterns of up to length k are allowed, or by allowing
up to k overlapping itemsets per part.

5.3 Tile-based Techniques

While expressing redundancy with itemsets and generative models can be very com-
plicated, as we have to somehow determine expected frequencies of itemsets given
frequencies of other itemsets, tiles provide much more straightforward and natural
ways of measuring redundancy. For instance, we can consider the overlap between
tiles.

As a basic example of such problem, consider the large tile mining problem we
encountered in Sect. 2, where the goal is to find all exact tiles covering at least
minarea 1s. When we cast this in the dynamic ranking framework, we would want
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to find the sequence of tiles such that each top-k covers as many 1s as possible using
k exact tiles. That is, every tile in the ranking has to cover as many uncovered 1s as
possible: any 1s the k-th tile covers already covered by a tile of rank ≤ k are simply
not counted—and hence redundancy is directly punished. Geerts et al. [21] call this
the maximal tiling problem, and identify it as an instance of the set cover problem,
which is known to be NP-hard [36].

For noisy tiles, overlap alone does not suffice to identify redundancy, as different
tiles may explain areas of the data in more fine or coarse detail. We should therefore
consider the quality of the tile, for example by punishing the noise, or favoring tiles
that are surprising.

To this end we can re-use the Rasch model [18], now using it to discover surprising
tile sets. Similar for ranking tiles based on area, we can also rank tilings by computing
the likelihood of entries covered by the tile set [37]. Similarly, to rank individual tiles,
we need to normalize this probability, as otherwise the best tiling is automatically
one tile containing the whole dataset. Kontonasios and De Bie [37] do not explicitly
update their model, but instead consider the case where the analyst would investigate
every tile exactly. As such, the values (0 s and 1 s) of a processed tile can be assumed
known, and hence the likelihoods of already covered cells set to 1. They further
show this covering problem is an instance of Weighted Budgeted Maximum Set
Cover, which is NP-hard, but for which the greedy approach is known to provide
good solutions.

The MaxEnt model composed from tiles can be also used in a similar manner as
the MaxEnt model from itemsets. For instance, given a set of tiles and their densities,
that is, the fraction of 1 s inside each tile, we can construct the corresponding MaxEnt
model and use the likelihood of the data as the goodness of the tile set [67]. Besides for
ranking a set of candidate tiles, Tatti and Vreeken show that many (exploratory) data
mining results on binary data can be translated into sets of noisy tiles. Hence, through
the same machinery, we can dynamically rank results from different algorithms based
on their relative informativeness [67].

Whereas the basic MaxEnt allows only frequencies of 1s within tiles as back-
ground knowledge, a recent paper by Kontonasios and De Bie [38], demonstrates
how more complex information can be incorporated. Examples include frequencies
of itemsets—unluckily, however, as we saw for the transaction based MaxEnt model,
this does mean that inferring from the model becomes the NP-hard in general.

In the introduction we spoke about the impossibility of formalizing the inherently
subjective notion of interestingness in general. Conceptually, however, dynamic
ranking comes very close. As long as we can infer the Maximum Entropy model for
the background knowledge an arbitrary user has, under the assumption that the user
can optimally make all inferences from this knowledge, we know from information
theory that our framework will correctly identify the most surprising result. De Bie
[17] argues that this setup is one of the most promising for measuring subjective
interestingness. The key challenges he identifies are in defining Maximum Entropy
models for rich data and pattern types, as well as for efficiently mining those patterns
that optimize the score.
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5.4 Swap Randomization

As the last model we consider for dynamic ranking, we return to the swap randomiza-
tion model we first described in Sect. 4. Recall that using this model we can sample
random datasets of fixed row and column margins, and that we can use these samples
to obtain empirical p-values.

We can extend this model by requiring that the sampled datasets must also have
fixed frequencies for a certain given set of itemsets. Unsurprisingly, this makes
sampling datasets very difficult, however. In fact, producing a a new dataset satisfying
all the constraints is computationally intractable in general, even if we have original
dataset at our disposal [29].

Instead of forcing hard constraints, we can relax these conditions and require that
the probability of a random dataset R should decrease as the frequencies of given
itemsets diverge from the target frequencies. Datasets that satisfy the given itemsets
exactly will have the largest probability but other datasets are also possible. This
relaxation allows us to use the same, well-understood, MCMC techniques as for
standard swap randomization [29].

6 Pattern Sets

Pattern set mining is the fourth and final approach to discovering interesting patterns
that we cover, and is also the most recent. It is strongly related to the dynamic
modeling approach we met in the previous section, but has a slightly different twist
and implications.

The general idea in pattern set mining is simple: instead of measuring the interest-
ingness of each pattern X individually, i.e., through q(X), we now define q over sets
of patterns X . That is, instead of evaluating a pattern X only locally, e.g., checking
whether it describes significant local structure of the data, the goal is now defined
globally. As such, we aim to find that set of patterns X that is optimal with regard
to q. For example, we can now say we want to find that set of patterns that together
describes the structure of the data best, i.e., that models the full joint distribution of
the data best.

By measuring quality over sets instead of individual patterns, we face a combi-
natorial problem over an exponential space of candidate elements. That is, to find
the optimal solution naively we would have to consider every possible subset out of
the space of 2|I| possible patterns in the data. Sadly, none of the proposed quality
measures for pattern set mining exhibit monotonicity, and hence we have no efficient
strategy to obtain the optimal pattern set. Moreover, while for some measures we
know that even approximating the optimum within any constant factor is NP-hard
[49], for most measures the score landscape is so erratic we so far have no results at
all on the complexity of the optimization problem.

In light of the search space and the difficulty of the problem, most pattern set
mining methods employ heuristics. In particular, the locally optimal greedy strategy
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is a popular choice. This means that in practice, pattern set mining methods and
dynamic modeling have a lot in common; although in iterative ranking there is no
explicit global goal defined, in order to find a ranking, we iteratively greedily find the
locally most informative pattern, and update the model. A key difference to pattern
set mining is that here we explicitly take the complexity of the pattern set in check;
we consider both the gain in quality, as well as the cost in complexity over the full
set.

(Though pattern set mining is a combinatorial problem, and intuitively optimizing
most instances seems very complex, so far theoretical hardness results have only been
found for a handful of cases, including [49, 48, 75].)

6.1 Itemsets

Krimp is among the most well-known pattern set mining algorithms. Siebes et al. [62]
define the best set of itemsets by the Minimum Description Length principle as the
set that provides the best lossless compression. Each itemset is assigned a code word,
the length of which depends on how frequently the itemset is used when greedily
covering the data without overlap. The pattern set is then scored on the number of
bits necessary to lossless describe the data. That is, the sum over the number of bits
to encode the dictionary, the itemsets and their code words, and number of bits to
encode the data using these code words.

The Krimp algorithm heuristically finds good sets by first mining frequent itemsets
up to a given minsup threshold, and greedily selecting from these in a fixed order.
The resulting pattern sets are typically small (100 s) and have been shown to be
useful in many data mining tasks [70] (see also Chap. 8). There exist a number of
variants of Krimp for other data types, including for low-entropy sets [31]. Siebes and
Kersten [61] investigated to structure functions, and proposed the Groei algorithm
for approximating the optimal k-pattern set.

Alternative to a descriptive model, we can aim to find a good generative model.
The Mini algorithm proposed by Gallo et al. [20] employs a probability distribution
based on itemsets and frequencies, and aims finding the set of itemsets that predict
the data best.

While intuitively appealing, using likelihood to score pattern sets, however, is not
enough since the score increases w.r.t. the inclusion of pattern set, that is, the set
containing all itemsets will have the highest likelihood. To control the size of the set
we need to exert some control over the output set. For example, we can either ask
the user to give a number of patterns k, or automatically control the number of the
itemsets by BIC [59] or MDL [58], in which case the improvement of adding a new
itemset into a result set must be significant.

The MaxEnt model employed by the mtv algorithm, which we met in the previous
section, does not only lend itself for iterative ranking, but can also be straight-
forwardly used with either of test two model selection criteria [42]. In practice,
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(partly due to the partitioning constraints necessary to keep computation feasible)
mtv typically finds pattern sets in the order of tens of patterns.

6.2 Tiles

The k maximal tiling problem, as defined by Geerts et al. [21] is perhaps the earliest
example of pattern set mining. Xiang et al. [74, 75] expanded on the problem setting
and aim to cover as many of the 1s of the data with k noisy tiles. Both problem
settings are NP-hard, and are related to Set Cover. As such, the greedy strategy is
known to find a solution within O( log n) of the optimum.

Boolean Matrix Factorization Strongly related to tiling is the problem of Boolean
Matrix Factorization (BMF) [49]. The goal in matrix factorization is to find a low-
rank approximation of the data. In case of BMF, each factor can be regarded as a
noisy tile, and a factorization hence as a set of tiles. BMF is known to be NP-hard, as
well as NP-hard to approximate [49]. The Asso algorithm is a heuristic for finding
good k-factorizations, and can be coupled with an MDL strategy to automatically
determine the best model order [47]. Lucchese et al. [40] gave the much faster PandA
algorithm, which optimizes a more loose global objective that weighs the number of
covered 1s with the number of 1s of the factors.

Geometric Tiles So far we have only considered unordered binary data in this
chapter. When we fix the order of the rows and columns, however, for instance
because the data is ordered spatially, it may only make sense to consider tiles that
are consecutive under this ordering. This problem setting gives rise to interesting
problem settings, as well as algorithmic solutions.

Gionis et al. [22] propose to mine dense geometric tiles that stand out from the
background distribution, and to do so iteratively in order to construct a tree of tiles.
To determine whether a tile is significant, they propose a simple MDL based score.
Finding the optimal tile under this score is O(n2 m2) and hence infeasible for non-
trivial data. To circumvent this problem, they propose a randomized approach. Tatti
and Vreeken [68] recently proposed an improved algorithm that can find the optimal
sub-tile in only O(mnmin(m, n)). The tile trees discovered by these methods typically
contain in the order of 10 s to 100 s of tiles.

Gionis et al. [22] also showed that by the same strategy, by first applying spectral
ordering, meaningful combinatorial tiles can be discovered from unordered binary
data.

6.3 Swap Randomization

The final pattern set mining approach we consider is based on swap randomization.
Lijffijt et al. [39] aim to find the smallest set of patterns that explains most about the
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data in terms of a global p-value. By employing the swap randomization framework,
and in particular by using empirical p-values they can consider a rich range of
patterns, including frequent itemsets as well as clusterings. The goal of finding the
smallest set that statistically explains the data is NP-hard in its general form, and
there exists no efficient algorithm with finite approximation ratio.

As many random datasets need to be sampled in order to determine significance
this approach is not as computationally efficient as some of the methods covered
above, however, it should be noted that the framework is highly general. In principle
it can be applied to any data and pattern type for which a (swap-)randomization variant
has been defined, which includes, among others, real-valued data [51], graphs [28],
and sequences [32].

7 Conclusions

With the goal of mining interesting patterns we face two main problems: first, we
need to be able to identify whether a pattern is potentially interesting, and second, we
do not want the results to be redundant. Both these concepts are subjective, and hence
there is no single correct answer to either of the two goals. Consequently, we provide
an overview of myriad of different techniques for mining interesting patterns. These
techniques range from classic reduction approaches, such as, closed itemsets and
non-derivable itemsets to statistical methods, where we either are looking patterns
that deviate most from the expectation or looking for a compact set that models the
data well.

Unlike when mining frequent itemsets, for more advanced interestingness mea-
sures we rarely have monotonicity to our advantage. This means that we cannot
prune the search space easily, and mining algorithms are hence significantly more
complex. In particular algorithms for discovering pattern sets are often heuristic.
Better understanding of these combinatorial problems and their score, for example,
by providing theoretical guarantees, is both a promising and necessary line of work
toward developing better and faster algorithms.

In this chapter we covered techniques meant only for binary data. In comparison,
discovering and defining interesting patterns and pattern sets from other types of
data, such as, sequences, graphs, or real-valued datasets is still strongly under-
developed. Both in the definition of useful interestingness measures, as well as in the
development of efficient algorithms for extracting such patterns directly from data
there exist many opportunities for exciting future work.

Regardless of data type, the key idea for future work is developing algorithms for
mining small and non-redundant sets of only the most interesting patterns. Or, to
quote Toon Calders at the 2012 ECMLPKDD most-influential paper award: “please,
please stop making new algorithms for mining all patterns”.
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