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Question of the day

Suppose we have a time series,
of, say 50 000 dimensions.

How can we detect
change points
in its distribution?




Change points




Our goal

We aim to do this for time series
with while ensuring
both quality and efficiency



Common strategy
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Simply sweep a test window over the data,
measure divergence of its distribution
against a reference window



Curse of Dimensionality

Directly considering full joint distributions
to compute divergence does not work
= distribution unknown

= estimation requires large samples
especially for high dimensional data

Naively, we can simply use very large windows
= this has many undesired effects
= high delay, missed alarms, and high runtime

(Desorby et al, ‘05; Harchaoui et al ‘08; Kawahara et al '09)



Principally

Instead, we can consider lower dimensional spaces
e.g. through Principal Component Analysis (PCA)

= measure divergence over only the projected space

Much better, but does not solve our problem
= covariance estimation also requires large windows
= PCA is cubic in number of dimensions

Lower dimensional is often still high dimensional
= 100 « 50000, but 100 dimensions are still challenging



LIGHT

We propose

= Linear-time change detection in hiGH dimensional Time series

In short,

= performs PCA to reduce dimensionality

- joint distribution in PCA space for efficient computation
= scales in both data size and dimensionality



Let there be LIGHT

Consider a reference window W, of m instances

= we use PCA to map to space S of k K n dimensions
= we then work with transformed window Wy,

In particular, we map test windows W;,.; to S
= and consider the difference between Wy, and Wy,



Scalable PCA

We want to do PCA, but...
= robustly, and not at 0(n?)

We use matrix sampling for and PCA
= consider data of W, as matrix A

= we sample with replacement ¢ < n columns,
according to relative variance, and obtain matrix C € R™*¢

= we perform PCA on C*C to compute k < ¢ eigenvectors of C,
such that ~95% of the variance of W, is maintained

Eigenvectors of C approximate those of A
= error bounds that hold with high probability
= 0(mc? + mnk) instead of 0(mn? + n?3)



Factorising the distribution

We do not want to consider the full joint over 100 dimensions...

Instead, we consider a factorised distribution

= graphical model G = (V, E) over the k dimensions of $
representing the joint by 1d and 2d distributions
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We obtain G by

1. computing all pairwise correlations

2. initialising G with all pairwise edges

3. and G to one of its maximum spanning trees



Non-linear changes

We want non-linear change detection
= 5o, we need a non-linear correlation measure

Quadratic measure of dependency
2
corr(Y, V)= [ (P(Yi:Yj) — P(}’i)P(Yj)) dy;dy;

= uses cumulative distribution functions

= permits computation in closed form on empirical data

= for all dimension pairs would take 0(m?k?)

= we can unbiased and error-bounded in O0(mk?)

(Seth et al, IEEE TSP 2011)



Measuring divergence

Next, we need to determine the of W5, to Wy,

We want to do so and

= quadratic measure of divergence
leveraging our factorisation

= initial cost 0(m?k), update cost 0(mk)

To detect changes we use an adaptive threshold
= Page-Hinkley test



LIGHT

In sum, LIGHT

= performs PCA to reduce dimensionality, and

- joint distribution in PCA space for efficient computation
= scales in both data size and dimensionality

Complexity analysis
= for time series with r changes, and m = 0(n) we have

0((c? + nk)mr + (M — r)mk)



EXperiments

Experiments show that LIGHT outperforms the

state of the art in both
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EXperiments

Experiments show that LIGHT outperforms the
state of the art in both quality and
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EXperiments

Experiments show that LIGHT outperforms the
state of the art in both quality and efficiency.

Data Dimensionality
Amazon 20000
EMGI 3000
EMG?2 2500
Sport 5625
Youtube 50000
Average

(m =100, c =50, v =90%, s; =50, s, = 3)



Experiments

Experiments show that LIGHT outperforms the

state of the art in both and efficiency.
F1 score
Data Dimensionality LIGHT PIND SPLL RSIF
Amazon 20000 0.91 - - 0.64
EMGI 3000 077 048 045 0.72
EMG?2 2500 0.84 041 044 0.67
Sport 5625 094 051 046 0.84
Youtube 50000 0.93 - - 0.76
Average 0.87 054 050 0.72

(m = 100, ¢ = 50, v = 90%, s; = 50, s, = 3)



Experiments

Experiments show that LIGHT outperforms the
state of the art in both quality and

F1 score Runtime
Data Dimensionality LIGHT PIND SPLL RSIF LIGHT PIND SPLL RSIF
Amazon 20000 0.91 - - 0.64  1273.6 00 co 19445
EMGI 3000 0.77 048 045 0.72 1.2 92.6 98.1 3.1
EMG?2 2500 0.84 041 0.44  0.67 1.1 34577 3415 2.3
Sport 5625 0.94 0.51 0.46 0.84 5.6 1295.7 1280.4 11.9
Youtube 50000 0.93 - - 076  4863.5 00 oo 73384
Average 0.87 054 050 0.72 878.6 00 oo 1329.5

(m = 100, ¢ = 50, v = 90%, s; = 50, s, = 3)



Experiments

Experiments show that LIGHT is very
with regard to parameter settings.
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Conclusions

We studied Linear-time detection of
non-linear changes in hiGH dimensional Time series

In short,

= performs PCA, the joint distribution
= efficient, non-parametric, non-linear

= scales in both data size and dimensionality

= permits calculation

Future work
- , for detecting non-linear changes in streaming data



Thant you!

We studied Linear-time detection of
non-linear changes in hiGH dimensional Time series

In short,

= performs scalable PCA, factorises the joint distribution
= efficient, non-parametric, non-linear

= scales linearly in both data size and dimensionality

= permits calculation

Future work
- , for detecting non-linear changes in streaming data

(source code available at: eda.mmci.uni-saarland.de/light )
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