LIGHT

Hoang Vu Nguyen Jilles Vreeken

Linear-time Detection of Non-linear Changes in Massively High Dimensional Time Series

Hoang Vu Nguyen

Jilles Vreeken

Question of the day

Suppose we have a time series, of, say **50 000** dimensions.

How can we detect change points in its distribution?

Change points

Points in time when important statistical properties change

Our goal

We aim to do this for time series with 50k dimensions while ensuring both quality and efficiency

Common strategy

Simply sweep a **test window** over the data, measure **divergence** of its distribution against a **reference window**

Curse of Dimensionality

Directly considering full joint distributions to compute divergence does not work

- distribution unknown
- estimation requires large samples
 - especially for high dimensional data

Naively, we can simply use very large windows

- this has many undesired effects
- high delay, missed alarms, and high runtime

Principally

Instead, we can consider **lower dimensional spaces** e.g. through Principal Component Analysis (PCA)

measure divergence over only the projected space

Much better, but does not solve our problem

- covariance estimation also requires large windows
- PCA is cubic in number of dimensions

Lower dimensional is often still high dimensional

• $100 \ll 50\,000$, but 100 dimensions are still challenging

LIGHT

We propose LIGHT

Linear-time change detection in high dimensional Time series

In short, LIGHT

- performs scalable PCA to reduce dimensionality
- factorises joint distribution in PCA space for efficient computation
- scales linearly in both data size and dimensionality

Let there be LIGHT

Consider a **reference window** W_{ref} of m instances

- we use PCA to map to space $\mathbb S$ of $k\ll n$ dimensions
- we then work with transformed window \mathcal{W}_{ref}'

In particular, we map **test windows** \mathcal{W}_{test} to \mathbb{S}

• and consider the difference between \mathcal{W}'_{ref} and \mathcal{W}'_{test}

Scalable PCA

We want to do PCA, but...

• robustly, and not at $O(n^2)$

We use matrix sampling for fast and reliable PCA

- consider data of \mathcal{W}_{ref} as matrix A
- we sample with replacement $c \ll n$ columns, according to relative variance, and obtain matrix $C \in \mathbb{R}^{m \times c}$
- we perform PCA on C^TC to compute $k \leq c$ eigenvectors of C, such that ~95% of the variance of \mathcal{W}_{ref} is maintained

Eigenvectors of C approximate those of A

- error bounds that hold with high probability
- $O(mc^2 + mnk)$ instead of $O(mn^2 + n^3)$

Factorising the distribution

We do not want to consider the full joint over 100 dimensions...

Instead, we consider a factorised distribution

• graphical model G = (V, E) over the k dimensions of \mathbb{S} representing the joint by 1d and 2d distributions

$$p(Y_1, \dots, Y_k) = \frac{\prod_{Y_i, Y_j \in E} p(Y_i, Y_j)}{\prod_{Y \in V} p(Y)^{\deg(Y) - 1}}$$

We obtain G by

- 1. computing all pairwise correlations
- 2. initialising G with all pairwise edges
- 3. and simplifying G to one of its maximum spanning trees

Non-linear changes

We want non-linear change detection

so, we need a non-linear correlation measure

Quadratic measure of dependency

$$corr(Y_i, Y_j) = \int \int (P(y_i, y_j) - P(y_i)P(y_j))^2 dy_i dy_j$$

- uses cumulative distribution functions
- permits computation in closed form on empirical data
- for all dimension pairs would take $O(m^2k^2)$
- we can estimate unbiased and error-bounded in $O(mk^2)$

Measuring divergence

Next, we need to determine the of \mathcal{W}_{test}' to \mathcal{W}_{ref}'

We want to do so efficiently and non-parametrically

- quadratic measure of divergence
 - leveraging our factorisation
- initial cost $O(m^2k)$, update cost O(mk)

To detect changes we use an adaptive threshold

Page-Hinkley test

LIGHT

In sum, LIGHT

- performs scalable PCA to reduce dimensionality, and
- factorises joint distribution in PCA space for efficient computation
- scales linearly in both data size and dimensionality

Complexity analysis

• for time series with r changes, and m = O(n) we have

$$O((c^2 + nk)mr + (M - r)mk)$$

Data	Dimensionality
Amazon	20 000
EMG1	3 000
EMG2	2 500
Sport	5 625
Youtube	50 000
Average	

F1 score

Data	Dimensionality	LIGHT	PIND	SPLL	RSIF
Amazon	20 000	0.91	-	-	0.64
EMG1	3 000	0.77	0.48	0.45	0.72
EMG2	2 500	0.84	0.41	0.44	0.67
Sport	5 625	0.94	0.51	0.46	0.84
Youtube	50 000	0.93	-	=	0.76
Average		0.87	0.54	0.50	0.72

Experiments show that LIGHT outperforms the state of the art in both quality and efficiency.

F1 score

Data	Dimensionality	LIGHT	PIND	SPLL	RSIF	LIGHT	PIND	SPLL	RSIF
Amazon	20 000	0.91	-	-	0.64	1273.6	∞	∞	1944.5
EMG1	3 000	0.77	0.48	0.45	0.72	1.2	92.6	98.1	3.1
EMG2	2 500	0.84	0.41	0.44	0.67	1.1	345.7	341.5	2.3
Sport	5 625	0.94	0.51	0.46	0.84	5.6	1295.7	1280.4	11.9
Youtube	50 000	0.93	-	-	0.76	4863.5	∞	∞	7338.4
Average		0.87	0.54	0.50	0.72	878.6	∞	∞	1329.5

Runtime

Experiments show that LIGHT is very robust with regard to parameter settings.

Conclusions

We studied Linear-time detection of non-linear changes in high dimensional Time series

In short, LIGHT

- performs scalable PCA, factorises the joint distribution
- efficient, non-parametric, non-linear
- scales linearly in both data size and dimensionality
- permits incremental calculation

Future work

SLIGHT, for detecting non-linear changes in streaming data

Thank you!

We studied Linear-time detection of non-linear changes in high dimensional Time series

In short, LIGHT

- performs scalable PCA, factorises the joint distribution
- efficient, non-parametric, non-linear
- scales linearly in both data size and dimensionality
- permits incremental calculation

Future work

SLIGHT, for detecting non-linear changes in streaming data